Efficient wave-equation-based Kirchhoff-style migration using interpolated excitation information

Reverse time migration is widely recognized as one of the most advanced seismic depth migration techniques because of its ability to generate a high-quality seismic image even for complex structures. However, its practical implementation for large-scale applications can be hindered by tremendous computational overhead and memory demands associated with handling wavefields. To address these challenges, we propose a wave equation-based, Kirchhoff-style migration method incorporating the excitation amplitude imaging condition. In our migration scheme, both the forward and backward wavefields are represented using excitation information obtained by interpolating a limited set of excitation information. This representation allows us to avoid not only storing the forward wavefield but also performing backward wavefield simulation. Numerical experiments with both synthetic and field data demonstrate that the proposed migration approach can deliver high-quality migration images with significantly improved computational efficiency.
- Zhu J, Lines LR. Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures. Geophysics. 1998;63(4): 1166-1176. doi: 10.1190/1.1444416
- Gray SH, Etgen J, Dellinger J, Whitmore D. Seismic migration problems and solutions. Geophysics. 2001;66(5):1622-1640. doi: 10.1190/1.1487107
- Gray SH, May WP. Kirchhoff migration using eikonal equation traveltimes. Geophysics. 1994;59:810-817. doi: 10.1190/1.1443639
- Gray SH, Bleistein N. True-amplitude Gaussian-beam migration. Geophysics. 2009;74(2):S11-S23. doi: 10.1190/1.3052116
- Hill NR. Prestack Gaussian-beam depth migration. Geophysics. 2001;66(4):1240-1250. doi: 10.1190/1.1487071
- Mulder WA, Plessix RE. A comparison between one-way and two-way wave-equation migration. Geophysics. 2004;69(6):1491-1504. doi: 10.1190/1.1836822
- Zhang Y, Zhang G, Bleistein N. Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration. Geophysics. 2005;70(4):E1-E10. doi: 10.1190/1.1988182
- Zhang Y, Xu S, Bleistein N, Zhang G. True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations. Geophysics. 2007;72(1):S49-S58. doi: 10.1190/1.2399371
- Baysal E, Kosloff DD, Sherwood JW. Reverse time migration. Geophysics. 1983;48(11):1514-1524. doi: 10.1190/1.1441434
- McMechan GA. Migration by extrapolation of time-dependent boundary values. Geophys Prospect. 2008;31: 413-420. doi: 10.1111/j.1365-2478.1983.tb01060.x
- Whitmore ND. Iterative depth migration by backward time propagation. In: SEG Technical Program Expanded Abstracts. Las Vegas, NV, USA: Society of Exploration Geophysicists; 1983. p. 382-385. doi: 10.1190/1.1893867
- Nguyen BD, McMechan GA. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics. 2015;80(1):S1-S18. doi: 10.1190/geo2014-0014.1
- Bo F, Huazhong W. Reverse time migration with source wavefield reconstruction strategy. J Geophys Eng. 2012;9(1):69-74. doi: 10.1088/1742-2132/9/1/008
- Liu S, Li X, Wang W, Zhu T. Source wavefield reconstruction using a linear combination of the boundary wavefield in reverse time migration. Geophysics. 2015;80(6):S203-S212. doi: 10.1190/geo2015-0109.1
- Nguyen BD, McMechan GA. Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics. 2013;78(1):S37-S46. doi: 10.1190/geo2012-0079.1
- Zhang M, Zhou H, Chen H, Jiang S, Jiang C. Reverse-time migration using local Nyquist cross-correlation imaging condition. IEEE Trans Geosci Remote Sens. 2022;60:1-14. doi: 10.1109/TGRS.2022.3168582
- Wang J, Li Q, Qiao B, Qi J. Reverse time migration using excitation amplitude imaging condition based on accurate first-arrival traveltimes calculation. IEEE Trans Geosci Remote Sens. 2025;63:1-11 doi: 10.1109/TGRS.2025.3527144
- Wang W, McMechan GA. Vector-based elastic reverse time migration. Geophysics. 2015;80(6):S245-S258. doi: 10.1190/geo2014-0620.1
- Zhou J, Wang D. Vector-based excitation amplitude imaging condition for elastic RTM. J Appl Geophys. 2017;147:1-9. doi: 10.1016/j.jappgeo.2017.10.003
- Kalita M, Alkhalifah T. Efficient full waveform inversion using the excitation representation of the source wavefield. Geophys J Int. 2017;210(3):1581-1594. doi: 10.1093/gji/ggx214
- Oh JW, Kalita M, Alkhalifah T. 3D elastic full-waveform inversion using P-wave excitation amplitude: Application to ocean bottom cable field data. Geophysics. 2018;83(2):R129-R140. doi: 10.1190/geo2017-0236.1
- Lee D, Kang SG, Kim S, Kim YS, Chung W. Efficient direct envelope inversion with excitation amplitude for strong velocity contrast model. IEEE Trans Geosci Remote Sens. 2024;62:1-12. doi: 10.1109/TGRS.2024.3422978
- Kim S, Kim YS, Chung W. Least‐squares reverse time migration using the most energetic source wavefields based on excitation amplitude imaging condition. Geophys Prospect. 2023;71(8):1438-1454. doi: 10.1111/1365-2478.13387
- Kim S, Kang SG, Choi Y, Chung W. Efficient extended least-squares reverse time migration based on an excitation amplitude imaging condition. Geophysics. 2024;89(1): S31-S45. doi: 10.1190/geo2023-0216.1
- Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics. 2007;72(5):SM155-SM167. doi: 10.1190/1.2757586
- Yoon K, Suh S, Cai J, Wang B. Improvements in Time Domain FWI and Its Applications. In: SEG International Exposition and Annual Meeting. 2012. p. 1-5. doi: 10.1190/segam2012-1535.1