Time-lapse earthquake difference prediction based on physics-informed long short-term memory coupled with interpretability boosting

Deep learning framework based on physical constraints and improved interpretability has revolutionized 4D seismic interpretation. This study proposes a physics-informed long short-term memory (PI-LSTM) framework integrated with interpretability enhancement techniques for high-precision time-lapse seismic difference prediction, addressing key challenges in reservoir monitoring. The model embeds the first-order velocity–stress wave equation into the LSTM gating mechanism, reducing the physical residual of North Sea field data from 62.3 kPa to 15.2 kPa—a 75.6% decrement. An interpretability enhancement module combines Shapley additive explanation value dynamic weighting with physical attention templates, reducing the seasonal fluctuation of feature importance by 38% (measured as ΔS). Key innovations include adaptive geological parameter mapping, where the physical constraint weight was automatically raised to 0.89 ± 0.04 when porosity exceeded 15%. In dual benchmark tests using Society of Exploration Geophysicists Synthetic Data and North Sea Field Surveys, PI-LSTM achieved a time-lapse prediction accuracy of 0.71–2.1 ms, equivalent to a hydrocarbon interface localization error of <3 m, outperforming commercial software by 62.9%. The framework demonstrates strong versatility across 12 reservoir types, maintaining prediction stability (coefficient of variation: <12%) under varying signal-to-noise ratios (15–40 dB). For high-pressure reservoirs (>35 MPa), the model reduced the wave equation residual to 18.6 kPa, 67.5% lower than conventional LSTMs, whereas fluid displacement volume prediction deviates by only 1.8% from well data. This work establishes a new paradigm for physics-guided 4D seismic interpretation, validated through multiscale experiments spanning from core-scale rock physics (8% error in grain contact stiffness) to field-scale reserve assessment (displacement volume R2 = 0.94).
- Wu YH, Pan SL, Lan HQ, et al. Dynamic reservoir monitoring using similarity analysis of passive source time-lapse seismic images: Application to waterflooding front monitoring in Shengli Oilfield, China. Petrol Sci. 2025;22(3):1062-1079. doi: 10.1016/j.petsci.2024.12.008
- Ding PB, Gong F, Zhang F, Li XY. A physical model study of shale seismic responses and anisotropic inversion. Petrol Sci. 2021;18(4):1059-1068. doi: 10.1016/j.petsci.2021.01.001
- Liu P, Zhao J, Li Z, Wang H. Numerical simulation of multiphase multi-physics flow in underground reservoirs: Frontiers and challenges. Capillarity. 2024;12(3):72-79. doi: 10.46690/capi.2024.03.02
- Wu Y, Sicard B, Gadsden SA. Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring. Expert Syst Appl. 2024;255:124678. doi: 10.1016/j.eswa.2024.124678
- Lim B, Zohren S. Time-series forecasting with deep learning: A survey. Philos Trans R Soc A Math Phys Eng Sci. 2021;379(2194):20200209. doi: 10.1098/rsta.2020.0209
- Cao C, Debnath R, Alvarez RM. Physics-based machine learning for predicting Urban air pollution using decadal time series data. Environ Res Commun. 2025;7(5):051009. doi: 10.1088/2515-7620/add795
- Kim S, Lee D, Lee S. Performance improvement of seismic response prediction using the LSTM-PINN hybrid method. Biomimetics (Basel). 2025;10(8):490. doi: 10.3390/biomimetics10080490
- Pwavodi J, Ibrahim AU, Pwavodi PC, Al-Turjman F, Mohand-Said A. The role of artificial intelligence and IoT in prediction of earthquakes. Artif Intell Geosci. 2024;5:100075. doi: 10.1016/j.aiig.2024.100075
- Xu Q, Shi Y, Bamber J, et al. Physics-Aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-Based Hydrology. [arXiv Preprint]; 2023. doi: 10.48550/arXiv.2310.05227
- Jain P, Coogan SC, Subramanian SG, et al. A review of machine learning applications in wildfire science and management. Environ Rev. 2020;28(4):478-505. doi: 10.1139/er-2020-0019
- Marano GC, Rosso MM, Aloisio A, Cirrincione G. Generative adversarial networks review in earthquake-related engineering fields. Bull Earthquake Eng. 2024;22(7):3511-3562. doi: 10.1007/s10518-023-01645-7
- Kloosterman HJ, Kelly RS, Stammeijer J, et al. Successful application of time-lapse seismic data in shell expro’s gannet fields, Central North Sea, UKCS. Petrol Geosci. 2003;9(1):25-34. doi: 10.1144/1354-079302-513
- Haverl MC, Aga M, Reiso E. Integrated Workflow for Quantitative use of Time-Lapse Seismic Data in History Matching: A North Sea field Case. In: Paper Presented At: SPE Europec Featured at EAGE Conference and Exhibition; 2005. Madrid, Spain. SPE-94453. doi: 10.2118/94453-MS
- Dong Y, Shen Y, Guo K, et al. Advanced workflow for time-lapse seismic monitoring of CO2 storage in saline aquifers with its application in a field basin. Sci Rep. 2025;15(1):21345. doi: 10.1038/s41598-025-09476-z
- Koster K, Gabriels P, Hartung M, Verbeek J, Deinum G, Staples R. Time-lapse seismic surveys in the North Sea and their business impact. Lead Edge. 2000;19(3):286-293. doi: 10.1190/1.1438594
- Alizadegan H, Rashidi Malki B, Radmehr A, Karimi H, Ilani MA. Comparative study of long short-term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption prediction. Energy Explor Exploit. 2025;43(1):281-301. doi: 10.1177/01445987241260319
- Botunac I, Bosna J, Matetić M. Optimization of traditional stock market strategies using the LSTM hybrid approach. Information. 2024;15(3):136. doi: 10.3390/info15030136
- Kiran Kumar V, Ramesh KV, Rakesh V. Optimizing LSTM and Bi-LSTM models for crop yield prediction and comparison of their performance with traditional machine learning techniques. Appl Intell. 2023;53(23):28291-28309. doi: 10.1007/s10489-023-05005-5
- Zhao C, Zhang F, Lou W, Wang X, Yang J. A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics. Phys Fluids. 2024;36(10):101101. doi: 10.1063/5.0226562
- Qi S, Sarris CD. Physics-informed deep operator network for 3-d time-domain electromagnetic modeling. IEEE Trans Microw Theory Tech. 2024;72(12):5204-5216. doi: 10.1109/TMTT.2024.3521389
- Liu B, Pang Y, Jiang P, et al. Physics-driven deep learning inversion for direct current resistivity survey data. IEEE Trans Geosci Remote Sens. 2023;61:1-11. doi: 10.1109/TGRS.2023.3263842
- Moser P, Fenz W, Thumfart S, Ganitzer I, Giretzlehner M. Modeling of 3D blood flows with physics-informed neural networks: Comparison of network architectures. Fluids. 2023;8(2):46. doi: 10.3390/fluids8020046
- Fawad M, Mondol NH. Monitoring geological storage of CO2 using a new rock physics model. Sci Rep. 2022;12(1):297. doi: 10.1038/s41598-021-04400-7
- Jo TH, Djezzar S, Barajas-Olalde C, Richards T. Utilizing 3D mechanical earth models for calibration and validation in a large-scale carbon capture and storage project in North Dakota. In: Proceedings of the 17th Greenhouse Gas Control Technologies Conference (GHGT-17). Calgary, Canada; 2024. doi: 10.2139/ssrn.5027942
- El Bilali A, Brouziyne Y, Attar O, Lamane H, Hadri A, Taleb A. Physics-informed machine learning algorithms for forecasting sediment yield: An analysis of physical consistency, sensitivity, and interpretability. Environ Sci Pollut Res Int. 2024;31(34):47237-47257.doi: 10.1007/s11356-024-34245-2
- Saxena N. Exact results for generalized Biot-Gassmann equations for rocks that change in pore shape and grain geometry. Geophys J Int. 2015;203(3):1575-1586. doi: 10.1093/gji/ggv386
- Bemer E, Hamon Y, Adelinet M. Consistent experimental investigation of the applicability of Biot-Gassmann’s equation in carbonates. Geophysics. 2019;84(4):WA97-WA113. doi: 10.1190/geo2018-0631.1