AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025320054
ARTICLE

Forward modeling study of seismic acquisition for fractured soft structures in deep geothermal reservoirs

Guoqiang Fu1 Zhiyu Tan1 Zhe Men2 Fei Gong3* Ping Che4* Qiang Guo1 Xiaoge Wu1 Fan Xiao1 Jingyi Lei1
Show Less
1 Department of Geophysics, School of Resources and Geosciences University of Mining and Technology, Xuzhou, Jiangsu, China
2 China National Petroleum Corporation BGP Inc., Zhuozhou, Hebei, China
3 Department of Geophysics and Information, College of Geoscience and Surveying Engineering University of Mining and Technology-Beijing, Beijing, China
4 Jiangsu East China Geological Construction Group Co., Ltd., Nanjing, China
JSE 2025, 34(3), 025320054 https://doi.org/10.36922/JSE025320054
Submitted: 8 August 2025 | Revised: 4 September 2025 | Accepted: 16 September 2025 | Published: 13 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Deep geothermal reservoirs are expected to serve as a sustainable resource for clean energy production, contributing to the achievement of global dual-carbon targets. This study analyzes the seismic acquisition method for soft-structure fracture zones in deep geothermal reservoirs through forward modeling analysis. Based on geological data from the Baoying area, China, a 2D geological model—integrating formation velocities, densities, and stochastic fracture media within the Upper Sinian–Middle Ordovician strata—was constructed for the forward modeling. To enhance the accuracy of seismic simulations and reduce numerical dispersion, high-order finite-difference methods were employed. A detailed theoretical analysis of seismic dispersion characteristics indicates that higher-order spatial and temporal differences can effectively mitigate numerical dispersion. Numerical seismic forward simulations were performed using a 10th-order difference accuracy, with a detailed analysis of acquisition survey parameters such as trace spacing, shot spacing, maximum offset, and record length. Simulated records for the geological model with and without fracture zones were compared, revealing distinct differences, particularly when fracture zones are located within high-velocity layers. Further analysis of pre-stack depth migration profiles with varying offsets, trace spacings, and shot intervals indicates that a maximum offset above 7000 m, a trace spacing of 5 m (or 10 m as a cost-effective option), and a shot interval of 40 m provide optimal imaging accuracy for fracture zones. These findings offer guidance for improving seismic imaging and interpretation of soft structures within fracture zones, thereby enhancing seismic exploration of deep geothermal reservoirs.

Keywords
Deep geothermal reservoirs
Soft structures
Fracture zones
Forward modelling
High-order finite-difference
Seismic acquisition
Funding
This study was funded by the Jiangsu Province Carbon Peak Neutral Technology Innovation Project in China (BE2022034).
Conflict of interest
The authors declare no conflicts of interest.
References
[1]
  1. Chopra S, Sharma RK., Bredesen K, Ha T, Marfurt KJ. Seismic characterization of a Triassic-Jurassic deep geothermal sandstone reservoir, onshore Denmark, using unsupervised machine learning techniques. Interpretation. 2021;9(4):T1097-T1106. doi: 10.1190/INT-2021-0091.1

 

  1. He K, Huang R, Xu Y, Hu S, Wei P. Crustal structures beneath the Northern Jiangsu Basin and its surrounding areas: Implications for geothermal prospecting. J Geophys Eng. 2022;19(3):316-325. doi: 10.1093/jge/gxac018

 

  1. Tian B, Lei X, Jiang H, Xu C, Song M. Multi-method geophysical mapping of a geothermal reservoir and buried channel in langfang, northern part of china. J Environ Eng Geophys. 2022;27(1):1-11. doi: 10.32389/jeeg20-068

 

  1. Wang X, Wang G, Gan H, Zhang Y, Gao Z. Constraints of hydrochemical and geological controls in deep-circulation geothermal systems: Insights from Chengde, Dehua, and Tashkorgan geothermal fields in China. Geothermics. 2025;127:103265. doi: 10.1016/j.geothermics.2025.103265

 

  1. Aleardi M, Mazzotti A. A feasibility study on the expected seismic AVA signatures of deep fractured geothermal reservoirs in an intrusive basement. J Geophys Eng.2014;11(6):065008. doi: 10.1088/1742-2132/11/6/065008

 

  1. Dyer BC, Schanz U, Ladner F, Häring MO, Spillman T. Microseismic imaging of a geothermal reservoir stimulation. Leading Edge. 2008;27(7):856-869. doi: 10.1190/1.2954024

 

  1. Bredesen K, Dalgaard E, Mathiesen A, Rasmussen R, Balling N. Seismic characterization of geothermal sedimentary reservoirs: A field example from the Copenhagen area, Denmark. Interpretation. 2020;8(2):T275-T291. doi: 10.1190/INT-2019-0184.1

 

  1. Fu G, Peng S, Wang R, et al. Seismic prediction and evaluation techniques for hot dry rock exploration and development. J Geophys Eng. 2022;19(4):694-705. doi: 10.1093/jge/gxac042

 

  1. Samrock F, Grayver A, Dambly MLT, Müller MR, Saar MO. Geophysically guided well siting at the Aluto-Langano geothermal reservoir. Geophysics. 2023;88(5):WB105-WB114. doi: 10.1190/geo2022-0617.1

 

  1. Zheng, Y., Wang, Y. High-resolution reflection seismic imaging to reveal subsurface geologic structures of a deep geothermal reservoir. Geophysics. 2023;88(5):WB37-WB43. doi: 10.1190/geo2022-0494.1

 

  1. Darisma D, Mukuhira Y, Okamoto K, et al. Building the fracture network model for the Okuaizu geothermal field based on microseismic data analysis. Earth Planets Space. 2024;76(1):107. doi: 10.1186/s40623-024-02049-w

 

  1. Tian A, Fu G, Tang J, Wang D. Numerical simulation of the transport and sealing law of temporary plugging particles in complex fractures of carbonate-type thermal storage. Energies. 2024;17(13):3283. doi: 10.3390/en17133283

 

  1. Aydın H, Camcı U, Akın S. An experimental investigation of hydraulic fracturing mechanisms in menderes metamorphic rocks: Prospects for enhanced geothermal systems. Geothermics. 2025;130:103328. doi: 10.1016/j.geothermics.2025.103328

 

  1. Mu S, Zhao L, Zhang A. Numerical simulation of geothermal extraction for interaction between irregular curve fractures and heterogeneous reservoirs. Rock Mech Rock Eng. 2025;58(3):2953-2970. doi: 10.1007/s00603-024-04339-x

 

  1. Civilini F, Pancha A, Savage MK, Sewell S, Townend J. Inferring shear-velocity structure of the upper 200 m using cultural ambient noise at the Ngatamariki geothermal field, Central North Island, New Zealand. Interpretation. 2016;4(3):SJ87-SJ101. doi: 10.1190/int-2015-0204.1

 

  1. Nakata N, Bi Z, Qiu H, Liu CN, Nakata R. ML-aided induced seismicity processing and interpretation for enhanced geothermal systems. Leading Edge. 2025;44(4):265-275. doi: 10.1190/tle44040265.1

 

  1. Jianfeng Z, Tielin L. Elastic wave modelling in 3D heterogeneous media: 3D grid method. Geophys J Int. 2002;150(3):780-799. doi: 10.1046/j.1365-246X.2002.01743.x

 

  1. Vlastos S, Liu E, Main IG, Li XY. Numerical simulation of wave propagation in media with discrete distributions of fractures: Effects of fracture sizes and spatial distributions. Geophys J Int. 2003;152(3):649-668. doi: 10.1046/j.1365-246X.2003.01876.x

 

  1. Hoffman BT, Chang WM. Modeling hydraulic fractures in finite difference simulators: Application to tight gas sands in Montana. J Pet Sci Eng. 2009;69(1-2):107-116. doi: 10.1016/j.petrol.2009.08.007

 

  1. Yang D, Song G, Hua B, Calandra H. Simulation of acoustic wavefields in heterogeneous media: A robust method for automatic suppression of numerical dispersion. Geophysics. 2010;75(3):T99-T110. doi: 10.1190/1.3428483

 

  1. Liu Y, Sen MK. An implicit staggered-grid finite-difference method for seismic modelling. Geophys J Int. 2009;179(1):459-474. doi: 10.1111/j.1365-246X.2009.04305.x

 

  1. Virieux J, Calandra H, Plessix R. A review of the spectral, pseudo‐spectral, finite‐difference and finite‐element modelling techniques for geophysical imaging. Geophys Prospect. 2011;59(5):794-813. doi: 10.1111/j.1365-2478.2011.00967.x

 

  1. Hedayatrasa S, Bui TQ, Zhang C, Lim CW. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements. J Comput Phys. 2014;258:381-404. doi: 10.1016/j.jcp.2013.10.037

 

  1. Lan HQ, Zhang ZJ. Seismic wavefield modeling in media with fluid-filled fractures and surface topography. Appl Geophys. 2012;9(3):301-312. doi: 10.1007/s11770-012-0341-5

 

  1. Ren ZM, Dai X, Bao QZ. Source wavefield reconstruction based on an implicit staggered-grid finite-difference operator for seismic imaging. Pet Sci. 2022;19(5):2095-2106. doi: 10.1016/j.petsci.2022.05.008

 

  1. Carcione JM. Seismic modeling in viscoelastic media. Geophysics. 1993;58(1):110-120. doi: 10.1190/1.1443340

 

  1. Wang Y, Zhao L, Quintal B, Geng J. Characterizing broad-band seismic dispersion and attenuation in carbonates with fractures and cavities: A numerical approach. Geophys J Int. 2025;240(3):1404-1425. doi: 10.1093/gji/ggae452

 

  1. Volker AWF, Blacquière G, Berkhout AJ, Ongkiehong L. Comprehensive assessment of seismic acquisition geometries by focal beams-Part II: Practical aspects and examples. Geophysics. 2001;66(3):918-931. doi: 10.1190/1.1444982

 

  1. Strong S, Hearn S. Multi-component seismic-resolution analysis using finite-difference acquisition modelling. Explor Geophys. 2008;39(4):189-197. doi: 10.1071/EG08023

 

  1. Lubrano, Lavadera P, Kühn D, et al. CO2 storage in the high Arctic: Efficient modelling of pre‐stack depth‐migrated seismic sections for survey planning. Geophys Prospect. 2018;66(6):1180-1200. doi: 10.1111/1365-2478.12637

 

  1. Ishiyama T, Blacquière G. 3‐D shallow‐water seismic survey evaluation and design using the focal‐beam method: A case study offshore Abu Dhabi. Geophys Prospect. 2016;64(5):1215-1234. doi: 10.1111/1365-2478.12335

 

  1. Zhang M. Efficient 3D seismic acquisition design using compressive sensing principles. J Seismic Explor. 2023;32(5):427-454.

 

  1. Tsingas C, Almubarak MS, Jeong W, Al Shuhail A, Trzesniowski Z. 3D distributed and dispersed source array acquisition and data processing. Leading Edge. 2020;39(6):392-400. doi: 10.1190/tle39060392.1

 

  1. Zhao H, Chen MY, Ni YD, et al. Research on optimization method for irregular seismic acquisition in curved wave domain based on simulated annealing. Appl Geophys. 2025;22(1):220-230. doi: 10.1007/s11770-025-1181-4

 

  1. Wang Y, Wang L, Hu D, et al. The present-day geothermal regime of the North Jiangsu basin, east china. Geothermics. 2020;88:101829. doi: 10.1016/j.geothermics.2020.101829

 

  1. Zhang L, Li S, Xu W, et al. Discussion on deep geothermal characteristics and exploration prospects in the Northern jiangsu basin. Energies. 2024;17(13):3128. doi: 10.3390/en17133128

 

  1. Yang L, Yan H, Liu H. Optimal implicit staggered‐grid finite‐difference schemes based on the sampling approximation method for seismic modelling. Geophys Prospect. 2016;64(3):595-610. doi: 10.1111/1365-2478.12325

 

  1. Peng C, Toksöz MN. An optimal absorbing boundary condition for elastic wave modeling. Geophysics. 1995;60(1):296-301. doi: 10.1190/1.1443758

 

  1. Shin C, Jang S, Min D. Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophys Prospect. 2001;49(5):592-606. doi: 10.1046/j.1365-2478.2001.00279.x

 

  1. Zhou H, Lin H, Sheng SB, Chen HM, Wang Y. High angle prestack depth migration with absorption compensation. Appl Geophys. 2012;9(3):293-300. doi: 10.1007/s11770-012-0339-z
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing