Seismic reflection modeling of an atoll: A comparison between pre- and post-stack migration sections

Atoll structures formed in complex geological settings act as stratigraphic hydrocarbon traps and are typically circular or elliptical reef structures with a large lagoon at the center. Initially, the circular reef with flat limestone serves as a potential reservoir rock and holds significant importance in the petroleum industry, as it forms hydrocarbon-bearing traps. Therefore, identifying these structures in seismic sections is crucial. To understand the seismic behavior of atoll structures, seismic shot gathers of a geological model were generated, and migration sections were obtained. In this study, artificial data modeling of an atoll structure containing oil traps was carried out using the two-dimensional acoustic finite difference method due to its practicality and the flexibility to select different trap models as needed. Seismic data modeling was performed in a pre-stack shot domain, and two different data processing stages were applied to the shot data to obtain pre-stack and post-stack Kirchhoff time migration sections. The spatial location and size of hydrocarbon traps in the migration sections were determined and compared with the initial atoll model. In this way, the seismic response of hydrocarbon trap structures in the atoll model was analyzed. The importance of the two different data processing methods was also examined. As a result, it was observed that the pre-stack Kirchhoff time migration method provides better results than the post-stack time migration method for the atoll model.
- Schlager W. Carbonate Sedimentology and Sequence Stratigraphy. Oklahoma: SEPM (Society for Sedimentary Geology), Concepts in Sedimentology and Paleontology; 2005.
- Wang P, Li Q, Li CF. Geology of the China seas. In: Developments in Marine Geolog. Amsterdam: Elsevier; 2014.
- Wu S, Zhang X, Yang Z, Wu T, Gao J, Wang D. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: Response to opening of the ocean basin. Interpretation. 2016;4(3):1-19. doi: 10.1190/INT-2015-0162.1
- Garcia GG, Henriques MH, Garcia AJV, Dantas MVS. Petrofacies and taphofacies analyses of coquinas as a tool for the establishment of a stratigraphic evolution model of the morro do chaves formation (SergipeAlagoas Basin, NE Brazil). Facies. 2021;67:4. doi: 10.1007/s10347-020-00614-9
- Zhu X, Jia G, Tian Y, et al. Ancient hydrocarbon slicks recorded by a coral atoll in the South China Sea. Chem Geol. 2023;619:121316. doi: 10.1016/j.chemgeo.2023.121316
- Cao D, Zeng L, Gomez-Rivas E, et al. Correction of linear fracture density and error analysis using underground borehole data. J Struct Geol. 2024;184:105152. doi: 10.1016/j.jsg.2024.105152
- Li Y, Jia D, Wang S, Qu R, Qiao M, Liu H. Surrogate model for reservoir performance prediction with time-varying well control based on depth generative network. Petrol Explor Dev. 2024;51(5),1287-1300. doi: 10.1016/S1876-3804(25)60541-6
- Niu Q, Hu M, Chang J, et al. Explosive fracturing fechanism in low-permeability sandstone-type uranium deposits considering different acidification reactions. Energy. 2024;312:133676. doi: 10.1016/j.energy.2024.133676
- Zhang L, Yuan X, Luo L, Tian Y, Zeng S. Seepage characteristics of broken carbonaceous shale under cyclic loading and unloading conditions. Energy Fuels. 2024;38(2):1192-1203. doi: 10.1021/acs.energyfuels.3c04160
- Deng R, Dong J, Dang L. Numerical simulation and evaluation of residual oil saturation in waterflooded reservoirs. Fuel. 2025;384:134018. doi: 10.1016/j.fuel.2024.134018
- Fagin SW. Seismic modeling of geologic structures: Applications to exploration problems. In: Geophysical Development Series. United States: Society of Exploration Geophysicists; 1991. doi: 10.1190/1.9781560802754
- Carcione JM, Herman GC, Kroode APE. Seismic modeling. Geophysics. 2002;67(4):1304-1325. doi: 10.1190/1.1500393
- Krebes ES. Seismic forward modeling. CSEG Record. 2004;30:28-39.
- Sayers CM, Chopra S. Introduction to this special section: Seismic modeling. Lead Edge. 2009;28:528-529. doi: 10.1190/1.3124926
- Gjøystdal H, Iversen E, Lecomte I, Kaschwich T, Drottning A, Mispel J. Improved applicability of ray tracing in seismic acquisition, imaging, and interpretation. Geophysics. 2007;72(5):261-271. doi: 10.1190/1.2736515
- Regone CJ. Using finite-difference modeling to design wide-azimuth surveys for improved subsalt imaging. Geophysics. 2007;72(5):31-239. doi: 10.1190/1.2668602
- Fu L, Guo J, Shen W, et al. Geophysical evidence of the collisional suture zone in the prydz bay, East Antarctica. Geophys Res Lett. 2024;51(2):e2023GL106229. doi: 10.1029/2023GL106229
- Albertin U, Woodward M, Kapoor J, et al. Depth imaging examples and methodology in the Gulf of Mexico. Lead Edge. 2001;20(5):449-560.doi: 10.1190/1.1438980
- Ray A, Pfau G, Chen R. Importance of ray-trace modeling in the discovery of the thunder horse North filed, gulf of Mexico. Lead Edge. 2004;23(1):1-88. doi: 10.1190/1.1645457
- Seitchick A, Jurick D, Bridge A, et al. The tempest project addressing challenges in deepwater gulf of Mexico depth imaging through geologic models and numerical simulation. Lead Edge. 2009;28:546-553. doi: 10.1190/1.3124929
- Kelly KR, Ward RW, Treitel S, Alford RM. Synthetic seismograms: A finite-difference approach. Geophysics. 1976;41(1):2-27. doi: 10.1190/1.1440605
- Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics. 1986;51(4):1933-1942. doi: 10.1190/1.1441605
- Igel H, Mora P, Riollet B. Anistotropic wave propagation through finite-difference grids. Geophysics. 1995;60(4):939-1278. doi: 10.1190/1.1443849
- Etgen J, O’Brien MJ. Computational methods for large-scale 3D acoustic finite-difference modeling. Geophysics. 2007;72(5):223-230. doi: 10.1190/1.2753753
- Bansal R, Sen MK. Finite-difference modeling of S-wave splitting in anisotropic media. Geophys Prospect. 2008;56:293-312. doi: 10.1111/j.1365-2478.2007.00693.x
- Liu Y, Sen MK, Jackson K. Advanced finite-difference methods for seismic modeling. Geohorizons. 2009:5-16.
- Robertsson JOA, Van Manen DJ, Schmelzbach C, Renterghem CV, Amudsen L. Finite-difference modelling of wavefield constituents. EAGE. 2016;203:1334-1342. doi: 10.3997/2214-4609.201601176
- Talukdar K, Behere L. Sub-basalt ımaging of hydrocarbon-bearing mesozoic sediments using ray-trace ınversion of first-arrival seismic data and elastic finite-difference full-wave modeling along sinor-valod profile of deccan syneclise, India. Pure Appl Geophys. 2018;175:2931-2954. doi: 10.1007/s00024-018-1831-z
- Boğazkesen Ş, Karslı H. Modeling of the complex hydrocarbon traps by the shot domain acoustic finite difference method and data-processing. Bull Min Res Explor. 2022;168:93-109. doi: 10.19111/bulletinofmre.985502
- Boğazkesen Ş, Karslı H. Seismic modeling of complex hydrocarbon traps in shot domain and data processing to obtain stack-migration sections. Petrol Sci Technol. 2025:1- 19. doi: 10.1080/10916466.2025.2477658
- Alterman Z, Karal FC Jr. Propagation of elastic waves in layered media by finite- difference methods. Bull Seismol Soc Am. 1968;58(1):367-398. doi: 10.1785/BSSA0580010367
- Boore DM. Finite-Difference Solutions to the Equations of Elastic Wave Propagation, with Application to Love Waves Over Dipping Interfaces. PhD Diss, M.I.T.Claerbout; 1970. Available from: https://hdl.handle.net/1721.1/50287 [Last accessed on 2025 Apr 14].
- Ottaviani M. Elastic-wave propagation in two evenly welded quarter-spaces. Bull Seismol Soc Am. 1971; 61(5):1119-1152. doi: 10.1785/BSSA0610051119
- Abuamarah BA, Nabawy BS, Shehata AM, Kassem OMK, Ghrefat H. Integrated geological and petrophysical characterization of oligocene deep marine unconventional poor to tight sandstone gas reservoir. Marine Petrol Geol. 2019;109:868-885. doi: 10.1016/j.marpetgeo.2019.06.037
- Huang X, Betzler C, Wu S, et al. First documentation of seismic stratigraphy and depositional signatures of zhongsha atoll (macclesfield Bank), South China Sea. Marine Petrol Geol. 2020;117:104349. doi: 10.1016/j.marpetgeo.2020.104349
- Wang J, Wu S, Yao Y. Quantifying gas hydrate from microbial methane in the South China Sea. J Asian Earth. 2018;168:48-56. doi: 10.1016/j.jseaes.2018.01.020
- Wang J, Wu S, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, Northern South China Sea. J Asian Earth Sci. 2018;168:17-26. doi: 10.1016/j.jseaes.2018.06.001
- Youzwishen CF, Margrave GF. Finite Difference Modeling of Acoustic Waves in Matlab. Crewes Research Report; Vol. 11. 1999. p. 1-19.
- Fichtner A. Finite difference methods. In: Full Seismic Waveform modeling and Inversion. Vol. 23. Berlin: Springer; 2011. p. 57. doi: 10.1007/978-3-642-15807-0_3
- Bohlen T. Parallel 3D viscoelastic finite difference seismic modeling. Comput Geosci. 2002;28(8):887-899. doi: 10.1016/S0098-3004(02)00006-7
- Levander AR. Finite-difference forward modeling in seismology. Geophysics. 1989;40:410-431. doi: 10.1007/0-387-30752-4_49
- Gold N, Shapiro SA, Burr E. Modeling of High Contrasts in Elastic Media using a Modified Finite Difference Scheme. In: 68th Annual International Meeting, SEG, Expanded Abstracts, ST 14.6; 1997. doi: 10.1190/1.1885798
- Saenger EH, Gold N, Shapiro S. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion. 2000;31(1:)77-92. doi: 10.1016/S0165-2125(99)00023-2
- Hyne NJ. Oil and Gas Field Classifier. 2nd ed. United States: PennWell Maps Publishing Company; 1984.
- Dondurur D. Acquisition and Processing of Marine Seismic Data. United States: Elsevier Science Publishing Co; 2018.
- Karslı H. A Different Application of the Frequency- Wavenumber (f-k) Filter. Kocaeli, Turkey: Earthquake Symposium; 2005.
- Dong X, Yang D. Crustal flow-induced earthquake revealed by full-waveform tomography and implications for prehistoric civilization destruction. J Geophys Res Solid Earth. 2025;130(4):e2024JB029745. doi: 10.1029/2024JB029745