AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025210006
ARTICLE

Regional patterns of seismic b-values variations in the Himalayan region (71.6°E – 95.5°E and 37.5°N – 26.6°N)

Ram Krishna Tiwari1* Anil Subedi1 Dilip Parajuli1 Santosh Dharel1 Anil Neupane1 Hari Subedi1 Bishow Raj Timsina1 Harihar Paudyal1
Show Less
1 Department of Physics, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, Nepal
JSE, 025210006
Submitted: 25 May 2025 | Revised: 5 July 2025 | Accepted: 8 July 2025 | Published: 28 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study conducts a detailed seismic hazard assessment of the Himalayan region. It focuses on studying how b-values, based on the Gutenberg–Richter law, vary throughout location and time. These fluctuations assist measuring tectonic stress and provide insights into the region’s seismic activity. This research focuses on five Himalayan sub-regions: Far Western, Western, Central-I, Central-II, and Eastern. It incorporates earthquake data spanning 1964 – 2023 obtained from the International Seismological Centre. The data were de-clustered using the Reasenberg method and examined by Maximum Likelihood Estimation. The results demonstrated considerable spatial variability in b-values across the Himalayan sub-regions. The Far Western Himalayas displayed the greatest b-value (0.93 ± 0.02), indicating frequent smaller earthquakes and lesser tectonic stress. In contrast, the Eastern (0.68 ± 0.02) and Central-I (0.69 ± 0.03) regions had the lowest b-values, implying more stress accumulation and a greater risk of future strong earthquakes. Temporal fluctuations, as a decrease in b-values preceding to the 2015 Gorkha earthquake (Mw 7.8) and a subsequent increase in Central-II (1.19 ± 0.03), highlighted the retention and release cycles. The Eastern Himalayas, particularly the Dhubri-Chungthang fault zone seismic gap in Bhutan, are considered a key high-risk zone. This region, with b-values ranging from 0.65 to 0.75, has remained unruptured since the 1934 Bihar-Nepal earthquake (Mw 8.4). The findings showed the influence of the continual convergence of the Indian and Eurasian plates (~20 mm/year) on strain heterogeneity. This study underlines the vital demand for intensive seismic monitoring, resilient infrastructure, and disaster readiness in low b-value areas to alleviate catastrophic risks in one of the globe’s most tectonically active regions.

Keywords
b-value
Gutenberg–Richter law
Himalayan region
Funding
None.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
  1. DiPietro JA, Pogue KR. Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics. 2004;23(5): 1-20. doi: 10.1029/2003TC001554

 

  1. Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India- Eurasia collision. Science. 1975;189(4201):419-426. doi: 10.1126/science.189.4201.419

 

  1. Martin CR, Jagoutz O, Upadhyay R, et al. Paleocene latitude of the Kohistan-Ladakh arc indicates multistage India-Eurasia collision. Proc Natl Acad Sci U S A. 2020;117(47):29487-29494. doi: 10.1073/pnas.2009039117

 

  1. Meigs AJ, Burbank DW, Beck RA. Middle-late miocene (>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology. 1995;23(5):423-426. doi: 10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2

 

  1. Valdiya KS. The two intracrustal boundary thrusts of the Himalaya. Tectonophysics. 1980;66(4):323-348. doi: 10.1016/0040-1951(80)90248-6

 

  1. Bilham R, Larson K, Freymueller J, et al. GPS measurements of present-day convergence across the Nepal Himalaya. Nature. 1997;386(6620):61-64. doi: 10.1038/386061a0

 

  1. Bilham R, Ambraseys N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000. Curr Sci. 2005;88(10):1658-1663.

 

  1. Bilham R. Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential. Geol Soc Spec Publ. 2019;483(1):423-482. doi: 10.1144/SP483.16

 

  1. Houston H. An introduction to seismology, earthquakes, and earth structure. Phys Today. 2003;56(10):66-67. doi: 10.1063/1.1629009

 

  1. Boulanouar A, Tiwari RK, Ahmed Z, Paudyal H. Fractal characteristics of earthquake occurrence in Al Hoceima city and its adjoining region, Morocco. Geosyst Geoenviron. 2025;4(3):100402. doi: 10.1016/j.geogeo.2025.100402

 

  1. Bilham R. Earthquakes in India and the Himalaya: Tectonics, geodesy and history. Ann Geophys. 2021;47(2-3):839-858. doi: 10.4401/ag-3338

 

  1. Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R. Paleoseismic evidences of grate surface rupture earthquakes along the Indian Himalaya. J Geophys Res Solid Earth. 2006;111(3):B03304. doi: 10.1029/2004JB003309

 

  1. Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci. 2013;6(1):71-76. doi: 10.1038/ngeo1669

 

  1. Bollinger L, Sapkota SN, Tapponnier P, et al. Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. J Geophys Res Solid Earth. 2014;119(9):7123-7163. doi: 10.1002/2014JB010970

 

  1. Scordilis EM. Empirical global relations converting MS and mb to moment magnitude. J Seismol. 2006;10(2):225-236. doi: 10.1007/s10950-006-9012-4

 

  1. Tiwari RK, Paudyal H. Gorkha earthquake (MW7.8) and aftershock sequence: A fractal approach. Earthq Sci. 2022;35(3):193-204. doi: 10.1016/j.eqs.2022.06.001

 

  1. Reddy DV, Nagabhushanam P, Kumar D, et al. The great 1950 Assam Earthquake revisited: Field evidences of liquefaction and search for paleoseismic events. Tectonophysics. 2009;474(3-4):463-472. doi: 10.1016/j.tecto.2009.04.024

 

  1. Singh I, Pandey A, Mishra RL, et al. Evidence of the 1950 great assam earthquake surface break along the mishmi thrust at namche barwa himalayan syntaxis. Geophys Res Lett. 2021;48(11):1-9. doi: 10.1029/2020GL090893

 

  1. Kaneda H, Nakata T, Tsutsumi H, et al. Surface rupture of the 2005 Kashmir, Pakistan, earthquake and its active tectonic implications. Bull Seismol Soc Am. 2008;98(2):521-557. doi: 10.1785/0120070073

 

  1. Avouac JP, Ayoub F, Leprince S, Konca O, Helmberger DV. The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet Sci Lett. 2006;249(3-4):514-528. doi: 10.1016/j.epsl.2006.06.025

 

  1. Avouac JP, Meng L, Wei S, Wang T, Ampuero JP. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci. 2015;8(9):708-711. doi: 10.1038/ngeo2518

 

  1. Elliott JR, Jolivet R, Gonzalez PJ, et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat Geosci. 2016;9(2):174-180. doi: 10.1038/ngeo2623

 

  1. Tiwari RK, Chaudhary S, Paudyal H, Shanker D. Identifying seismicity pattern before major earthquakes in the Western Nepal and adjoining region (28.5°N to 31.0°N - 78°E to 82.96°E). Environ Earth Sci. 2024;83(15):1-11. doi: 10.1007/s12665-024-11764-2

 

  1. Diehl T, Singer J, Hetényi G, et al. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation. Earth Planet Sci Lett. 2017;471:54-64. doi: 10.1016/j.epsl.2017.04.038

 

  1. Sciences P, Sciences A, Hall P, Nazionale I, Murata V. Seismic Fault Rheology and Earthquake Dynamics. Tecton Faults. Massachusetts: Massachusetts Institute of Technology; 2018. doi: 10.7551/mitpress/6703.003.0007

 

  1. Pudi R, Tapas RM, Vinod KK. Regional variation of stress level in the Himalayas after the 25 April 2015 Gorkha earthquake (Nepal) estimated using b-values. J Geophys Eng. 2018;15(3):921-927. doi: 10.1088/1742-2140/aaa26c

 

  1. Bhatia SC, Kumar MR, Gupta HK. A probabilistic seismic hazard map of India and adjoining regions. Ann di Geofis. 1999;42(6):1153-1164. doi: 10.4401/ag-3777

 

  1. Das S, Gupta ID, Gupta VK. A probabilistic seismic hazard analysis of Northeast India. Earthq Spectra. 2006;22(1):1-27. doi: 10.1193/1.2163914

 

  1. Gutenberg B, Richter CFF. Frequency of earthquakes in California. Bull Seismol Soc Am. 1944;34:185-188. doi: 10.1038/156371a0

 

  1. Okal EA, Romanowicz BA. On the variation of b-values with earthquake size. Phys Earth Planet Inter. 1994;87(1-2):55-76. doi: 10.1016/0031-9201(94)90021-3

 

  1. Scholz CH. On the stress dependence of the earthquake b value. Geophys Res Lett. 2015;42(5):1399-1402. doi: 10.1002/2014GL062863

 

  1. Wiemer S, Wyss M. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys. 2002;45(C):259-302. doi: 10.1016/S0065-2687(02)80007-3

 

  1. Nakaya S. Spatiotemporal variation in b value within the subducting slab prior to the 2003 Tokachi-oki earthquake (M 8.0), Japan. J Geophys Res Solid Earth. 2006;111(3):3311. doi: 10.1029/2005JB003658

 

  1. Sharma V, Bora DK, Biswas R. Spatio-temporal analysis of b-value prior to 28 April 2021 Assam Earthquake and implications thereof. Ann Geophys. 2022;65(5):SE534. doi: 10.4401/ag-8802

 

  1. Tiwari RK, Paudyal H. Variability of b-value before and after the Gorkha earthquake in the Central Himalaya and Vicinity. BIBECHANA. 2021;18(2):32-42. doi: 10.3126/bibechana.v18i2.31207

 

  1. Bondár I, Storchak D. Improved location procedures at the international seismological centre. Geophys J Int. 2011;186(3):1220-1244. doi: 10.1111/j.1365-246X.2011.05107.x

 

  1. Willemann RJ, Storchak DA. Data collection at the international seismological centre. Seismol Res Lett. 2001; 72(4):440-453. doi: 10.1785/gssrl.72.4.440

 

  1. Di Giacomo D, Robert Engdahl E, Storchak DA. The ISC-GEM Earthquake Catalogue (1904-2014): Status after the extension project. Earth Syst Sci Data. 2018;10(4):1877-1899. doi: 10.5194/essd-10-1877-2018

 

  1. Reasenberg P. Second-order moment of central California seismicity, 1969-1982. J Geophys Res Solid Earth. 1985;90(B7):5479-5495. doi: 10.1029/jb090ib07p05479

 

  1. Wiemer S, Wiemer. A software package to analyze seismicity: ZMAP. Seismol Res Lett. 2001;72(3):373-382. doi: 10.1785/gssrl.72.3.373

 

  1. Aki K. Maximum likelihood estimate of b in the Gutenberg- Richter formula and its confidence limits. Bull Earthq Res Inst. 1965;43(43):237-239.

 

  1. Utsu T. Aftershocks and earthquake statistics (III)- analyses of the distribution of earthquakes in magnitude, time, and space with special considertion to clustering characteristics of earthquake occurrence (1). J Fac Sci Hokkaido Univ Ser VII. 1971;3:379-441.

 

  1. Shi Y, Bolt BA. The standard error of the magnitude-frequency b value. Bull Seismol Soc Am. 1982;72(5):1677-1687. doi: 10.1785/bssa0720051677

 

  1. Tiwari RK, Paudyal H. Fractal characteristics of the seismic swarm succeeding the 2015 Gorkha Earthquake, Nepal. Indian Geotech J. 2023;53(4):789-804. doi: 10.1007/s40098-022-00704-1

 

  1. Aswini KK, Kamesh Raju KA, Dewangan P, Yatheesh V, Singha P, Ramakrushana Reddy T. Seismotectonic evaluation of off Nicobar Earthquake Swarms, Andaman Sea. J Asian Earth Sci. 2021;221:104948. doi: 10.1016/j.jseaes.2021.104948

 

  1. Oncel AO, Wilson T. Space-time correlations of seismotectonic parameters: Examples from Japan and from Turkey preceding the İzmit earthquake. Bull Seismol Soc Am. 2002;92(1):339-349. doi: 10.1785/0120000844

 

  1. Babu VG, Kumar N, Verma SK, Pal SK. An updated earthquake catalogue and seismic regimes in the northwest Himalaya: Seismic periodicity associated with strong earthquakes. J Earth Syst Sci. 2023;132(4):173. doi: 10.1007/s12040-023-02180-4

 

  1. Khan PK, Mohanty SP, Sinha S, Singh D. Occurrences of large-magnitude earthquakes in the Kachchh region, Gujarat, western India: Tectonic implications. Tectonophysics. 2016;679:102-116. doi: 10.1016/j.tecto.2016.04.044

 

  1. Chetia M, Gogoi PR, Lahiri SK. Temporal variation of seismic b-value in the Himalayas and foreland region and its implications on crustal stress variability. Acta Geophys. 2023;71(4):1675-1692. doi: 10.1007/s11600-022-00999-x

 

  1. Tiwari RK, Paudyal H. Analysis of the b, p values, and the fractal dimension of aftershocks sequences following two major earthquakes in central Himalaya. Heliyon. 2024;10(2):e24476. doi: 10.1016/j.heliyon.2024.e24476

 

  1. Molnar P, Lyon‐Caent H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys J Int. 1989;99(1):123-154. doi: 10.1111/j.1365-246X.1989.tb02020.x

 

  1. Tiwari RK, Paudyal H. Spatial mapping of b-value and fractal dimension prior to November 8, 2022 Doti Earthquake, Nepal. PLoS One. 2023;18:e0289673. doi: 10.1371/journal.pone.0289673

 

  1. Kumar S, Sharma N. The seismicity of central and north-east Himalayan region. Contrib Geophys Geodes. 2019;49(3):265-281. doi: 10.2478/congeo-2019-0014

 

  1. Pathak V, Pant C, Joshi S. Source Parameter and b-Value Estimation of Local Earthquakes in Kumaun Region, Central Himalaya, India. Int J Adv Res. 2016;4(9):15254-1266.doi: 10.21474/ijar01/1609

 

  1. Yadav RBS, Bormann P, Rastogi BK, Das MC, Chopra S. A homogeneous and complete earthquake catalog for northeast India and the adjoining region. Seismol Res Lett. 2009;80(4):609-627. doi: 10.1785/gssrl.80.4.609

 

  1. Rajendran K, Parameswaran RM, Rajendran CP. Revisiting the 1991 Uttarkashi and the 1999 Chamoli, India, earthquakes: Implications of rupture mechanisms in the central Himalaya. J Asian Earth Sci. 2018;162:107-120. doi: 10.1016/j.jseaes.2018.04.012

 

  1. Tiwari A, Paul A, Singh R, Upadhyay R. Potential seismogenic asperities in the Garhwal-Kumaun region, NW Himalaya: Seismotectonic implications. Nat Hazards. 2021;107(1):73-95. doi: 10.1007/s11069-021-04574-3

 

  1. Yadav RBS, Koravos GC, Tsapanos TM, Vougiouka GE. A probabilistic estimate of the most perceptible earthquake magnitudes in the NW Himalaya and Adjoining Regions. Pure Appl Geophys. 2015;172(2):197-212. doi: 10.1007/s00024-014-0864-1

 

  1. Gunti S, Roy P, Narendran J, et al. Assessment of geodetic strain and stress variations in Nepal due to 25 April 2015 Gorkha earthquake: Insights from the GNSS data analysis and b-value. Geod Geodyn. 2022;13(3):288-300. doi: 10.1016/j.geog.2022.01.003

 

  1. Hajra S, Hazarika D, Shukla V, Kundu A, Pant CC. Stress dissipation and seismic potential in the central seismic gap of the north-west Himalaya. J Asian Earth Sci. 2022;239:105432. doi: 10.1016/j.jseaes.2022.105432

 

  1. Prasath RA, Paul A, Singh S. Earthquakes in the garhwal himalaya of the central seismic gap: A study of historical and present seismicity and their implications to the seismotectonics. Pure Appl Geophys. 2019;176(11):4661-4685. doi: 10.1007/s00024-019-02239-8

 

  1. Sreejith KM, Sunil PS, Agrawal R, Saji AP, Rajawat AS, Ramesh DS. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci Rep. 2018;8(1):1-9. doi: 10.1038/s41598-018-35025-y

 

  1. Rajendran K, Parameswaran RM, Rajendran CP. Seismotectonic perspectives on the Himalayan arc and contiguous areas: Inferences from past and recent earthquakes. Earth-Science Rev. 2017;173:1-30. doi: 10.1016/j.earscirev.2017.08.003
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing