AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025260029
ARTICLE

Earthquake and blast recognition based on CEEMDAN multiscale fuzzy entropy and NSGAIII optimized 1D-CNN neural networks

Cong Pang1,2 Tianwen Zhao3 Guoqing Chen4,5 Chawei Li1,2 Zhongya Li1,2 Piyapatr Busababodhin5,6 Pornntiwa Pawara7*
Show Less
1 Institute of Seismology Earthquake Administration, Wuhan, Hubei, China
2 Fund of Wuhan, Gravitation and Solid Earth Tides, National Observation and Research Station, Wuhan, Hubei, China
3 Department of Trade and Logistics, Daegu Catholic University, Gyeongsan, Daegu, Republic of Korea
4 Mathematical Modeling Research Center, Chengdu Jincheng College, Chengdu, Sichuan, China
5 Department of Mathematics, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand
6 The Digital Innovation Research Cluster for Integrated Disaster Management in the Watershed, Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand
7 Department of Computer Science, Faculty of Informatics, Mahasarakham University, Kantarawichai, Maha Sarakham, Thailand
JSE 2025, 34(1), 025260029 https://doi.org/10.36922/JSE025260029
Submitted: 28 June 2025 | Revised: 20 July 2025 | Accepted: 25 July 2025 | Published: 31 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study proposes an enhanced method for natural earthquake and artificial explosion recognition, which comprises two parts, namely the multiscale fuzzy entropy (MFE) feature extraction of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and the non-dominated sorting genetic algorithm III (NSGAIII) optimization of the one-dimensional convolutional neural network (1D-CNN). CEEMDAN decomposes earthquake signals into initial functions (intrinsic mode functions) and extracts fuzzy entropy features to construct a discriminative time-frequency representation. The hyperparameters of 1D-CNN (minimum batch size, initial learning rate, and learning rate drop factor) were optimized by NSGAIII, using a dual objective function to minimize mean squared error and maximize R2. Tests on 1000 earthquake events (883 earthquakes and 117 explosions) showed that the model has an accuracy of 97.82%, which is better than traditional networks (1D-CNN, generalized regression neural network, probabilistic neural network, back propagation neural network, and radial basis function neural network) and has better regression indicators (mean absolute error = 0.0795, root mean squared error = 0.1302, R2 = 0.7361). The Adam optimization algorithm achieved peak performance (99.50%), significantly surpassing SGD-M and RMSprop. This framework effectively solves the small sample and high-dimensional classification problems in earthquake monitoring and improves the automatic event detection capability of the early warning system.

Keywords
Seismic wave recognition
Multiscale fuzzy entropy
Complete ensemble empirical mode decomposition with adaptive noise
One-dimensional convolutional neural network
Third-generation non-dominated sorting genetic algorithm
Funding
This research was financially supported by Mahasarakham University; Open Fund of Wuhan Gravitation and Solid Earth Tides, National Observation and Research Station, (No.WHYWZ202406, WHYWZ202208); Scientific Research Fund of Institute of Seismology, China Earthquake Administration and National Institute of Natural Hazards, MEM, (No. IS202236328, IS202436357); The Spark Program of Earthquake Technology of CEA, (No. XH24025YC); Earthquake Monitoring and Forecasting and Early Warning Tasks for 2025, (No. CEA-JCYJ-202502015); Chengdu Jincheng College Green Data Integration Intelligence Research and Innovation Project (No. 2025-2027); and the High-Quality Development Research Center Project in the Tuojiang River Basin (No. TJGZL2024-07).
Conflict of interest
The authors declare they have no competing interests.
References
[1]
  1. Johnson JA, Mutchnick AB. Identification of wall tension fractures caused by earthquakes, blasting, and pile driving. Environ Eng Geosci. 2016;22(2):131-139. doi: 10.2113/gseegeosci.22.2.131

 

  1. Dong LJ, Wesseloo J, Potvin Y. Discriminant models of blasts and seismic events in mine seismology. Int J Rock Mech Min Sci. 2016;86:282-291. doi: 10.1016/j.ijrmms.2016.04.021

 

  1. Lythgoe K, Loasby A, Hidayat D, Wei S. Seismic event detection in urban Singapore using a nodal array and frequency domain array detector: Earthquakes, blasts, and thunder quakes. Geophys J Int. 2021;226(3):1542-1557.doi: 10.1093/gji/ggab135

 

  1. Saad M, Soliman MS, Chen Y, Amin AA, Abdelhafiez HE. Discriminating earthquakes from quarry blasts using capsule neural network. IEEE Geosci Remote Sens Lett. 2022;19:1-5. doi: 10.1109/LGRS.2022.3207238

 

  1. Wang S, Hu Y, Chen H, Chen X. An energy-concentrated transform for improved time-frequency representation of seismic signals. IEEE Signal Process Lett. 2025;32:2084-2088. doi: 10.1109/LSP.2025.3565164

 

  1. Rivera E, Ruiz S, Madariaga R. Spectrum of strong-motion records for large magnitude Chilean earthquakes. Geophys J Int. 2021;226(2):1045-1057. doi: 10.1093/gji/ggab128

 

  1. Mei W, Li M, Pan PZ, Pan J, Liu K. Blasting induced dynamic response analysis in a rock tunnel based on combined inversion of Laplace transform with elasto-plastic cellular automaton. Geophys J Int. 2020;225(1):699-710. doi: 10.1093/gji/ggaa615

 

  1. Matsushima M, Honkura Y, Kuriki M, Ogawa Y. Circularly polarized electric fields associated with seismic waves generated by blasting. Geophys J Int. 2013;194(1):200-211. doi: 10.1093/gji/ggt110

 

  1. Xiao Y, Guo J, Chen S, Liu L, Chen B. Digitalization of rock fracture signal identification from tunnel microseismic data. IEEE Geosci Remote Sens Lett. 2024;21:1-5. doi: 10.1109/LGRS.2024.3399271

 

  1. Zhou J, Ba J, Castagna JP, Guo Q, Yu C, Jiang R. Application of an STFT-based seismic even and odd decomposition method for thin-layer property estimation. IEEE Geosci Remote Sens Lett. 2019;16(9):1348-1352. doi: 10.1109/LGRS.2019.2901261

 

  1. Geetha K, Hota MK. Seismic random noise attenuation using optimal empirical wavelet transform with a new wavelet thresholding technique. IEEE Sens J. 2024;24(1):596-606. doi: 10.1109/JSEN.2023.3334819

 

  1. Alvanitopoulos PF, Papavasileiou M, Andreadis I, Elenas A. Seismic intensity feature construction based on the Hilbert-Huang transform. IEEE Trans Instrum Meas. 2012;61(2):326-337. doi: 10.1109/tim.2011.2161934

 

  1. Chen CH, Wang CH, Liu JY, Liu C, Liang WT, Yen HY. Identification of earthquake signals from groundwater level records using the HHT method. Geophys J Int. 2010;180(3):1231-1241. doi: 10.1111/j.1365-246X.2009.04473.x

 

  1. Küperkoch L, Meier T, Lee J, Friederich W. Automated determination of P-phase arrival times at regional and local distances using higher order statistics. Geophys J Int. 2010;181(2):1159-1170. doi: 10.1111/j.1365-246X.2010.04570.x

 

  1. Zhu J, Zhou Y, Liu H, et al. Rapid earthquake magnitude classification using single station data based on machine learning. IEEE Geosci Remote Sens Lett. 2024;21:1-5. doi: 10.1109/lgrs.2023.3346655

 

  1. Samal P, Hashmi MF. Ensemble median empirical mode decomposition for emotion recognition using EEG signal. IEEE Sens Lett. 2023;7(5):1-4. doi: 10.1109/lsens.2023.3265682

 

  1. Chen J, Heincke B, Jegen M, Moorkamp M. Using empirical mode decomposition to process marine magnetotelluric data. Geophys J Int. 2012;190(1):293-309. doi: 10.1111/j.1365-246X.2012.05470.x

 

  1. Li B, Huang H, Wang T, Wang M, Wang P. Research on Seismic Signal Classification and Recognition Based on EEMD and CNN. Presented at: 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE). Shenzhen, China; 2020. p. 83-88. doi: 10.1109/ICECE51594.2020.9353037

 

  1. Zhang D, Wang Y, Zhu T, Ma GW. Mode identification method of long span steel bridge based on CEEMDAN and SSI algorithm. Earthquake Eng Resil. 2024;3(3):388. doi: 10.1002/eer2.89

 

  1. Wu S, Guo H, Zhang X, Wang F. Short-term photovoltaic power prediction based on CEEMDAN and hybrid neural networks. IEEE J Photovolt. 2024;14(6):960-969. doi: 10.1109/jphotov.2024.3453651

 

  1. Wang J, Dai B, Zhang T, Qi L. A novel hybrid model of CEEMDAN-CNN-SAGU for Shanghai copper price prediction. IEEE Access. 2024;12:25176-25187. doi: 10.1109/access.2024.3365558

 

  1. Tian S, Bian X, Tang Z, Yang K, Li L. Fault diagnosis of gas pressure regulators based on CEEMDAN and feature clustering. IEEE Access. 2019;7:132492-132502. doi: 10.1109/ACCESS.2019.2941497

 

  1. Li J, Yao R. Field deployment of natural gas pipeline pre-warning system with CEEMDAN denoising method. IEEE Photon J. 2024;16(4):1-8. doi: 10.1109/JPHOT.2024.3421275

 

  1. Pan L, Liu M, Chen R, Ma S. Research on Seismic Signal Identification and Magnitude Prediction Model Based on Sample Entropy and Machine Learning. Presented at: 2024 IEEE 2nd International Conference on Sensors, Electronics and Computer Engineering (ICSECE). Beijing, China; 2024. p. 1586-1592. doi: 10.1109/icsece61636.2024.10729556

 

  1. Aggarwal M. Bridging the gap between probabilistic and fuzzy entropy. IEEE Trans Fuzzy Syst. 2020;28(9):2175-2184. doi: 10.1109/TFUZZ.2019.2931232

 

  1. Ali M, Nathwani K. Exploiting wavelet scattering transform and 1D-CNN for unmanned aerial vehicle detection. IEEE Signal Process Lett. 2024;31:1790-1794. doi: 10.1109/LSP.2024.3421961

 

  1. Kail R, Burnaev E, Zaytsev A. Recurrent convolutional neural networks help to predict location of earthquakes. IEEE Geosci Remote Sens Lett. 2022;19:1-5. doi: 10.1109/lgrs.2021.3107998

 

  1. Sivanjaneyulu Y, Manikandan MS, Boppu S, Cenkeramaddi LR. Resource-efficient derivative PPG-based signal quality assessment using one-dimensional CNN with optimal hyperparameters for quality-aware PPG analysis. IEEE Access. 2024;12:141251-141267. doi: 10.1109/access.2024.3464231

 

  1. Perera S, Witharana C, Manos E, Liljedahl AK. Hyperparameter optimization for large-scale remote sensing image analysis tasks: A case study based on permafrost landform detection using deep learning. IEEE Access. 2024;12:43062-43077. doi: 10.1109/ACCESS.2024.3379142

 

  1. Wang Y, Wang Y, Jiang K, Zheng W, Song M. Adaptive grid search-based pulse phase and Doppler frequency estimation for XNAV. IEEE Trans Aerosp Electron Syst. 2024;60(3):3707-3717. doi: 10.1109/TAES.2024.3361431

 

  1. Ren L, Li Y, Zhou S. An improved NSGA-III algorithm for scheduling ships arrival and departure at the main channel of Tianjin Port. IEEE Access. 2024;12:131442-131457. doi: 10.1109/access.2024.3457526

 

  1. Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221-248. doi: 10.1162/evco.1994.2.3.221

 

  1. Deb K, Pratap A, Agarwal S, Meyarivan TAMT. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182-197. doi: 10.1109/4235.996017

 

  1. Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput. 2013;18(4):577-601. doi: 10.1109/TEVC.2013.2281535
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing