ARTICLE

Sensitivity analysis of elastic full-waveform inversion for orthorhombic media

SAGAR SINGH ILYA TSVANKIN
Show Less
Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A.,
JSE 2022, 31(2), 105–130;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Singh, S. and Tsvankin, I., 2022. Sensitivity analysis of elastic full-waveform inversion for orthorhombic media. Journal of Seismic Exploration, 31: 105-130. Application of elastic full-waveform inversion (FWI) to orthorhombic models, which are typical for many subsurface formations, is highly challenging due to the large computational cost and parameter trade-offs. Analyzing radiation (scattering) patterns of the medium parameters s can yield valuable insights into potential trade-offs and the types of data required for reliable parameter estimation. These patterns can be obtained by computing the seismic wavefield due to parameter perturbations represented by the sensitivity kernels (the Fréchet derivatives). We study the sensitivity of FWI to the parameters of elastic orthorhombic media by examining the radiation patterns for a background VTI (transversely isotropic with a vertical axis of symmetry) model. The employed velocity-based parameterization, which represents an extension of previously published notations, can be efficiently incorporated into the FWI framework. In contrast to most existing publications, our analysis includes the radiation patterns for a perturbation in density. The results show that the vertical velocities of the S-waves and the symmetry-direction horizontal velocities of the P-waves can be obtained with high resolution from P- and PS-wave reflection data. The patterns for the S-wave vertical velocities, however, have some overlap with those for the P-wave normal-moveout (NMO) velocities. The P-wave vertical velocity can also be resolved from the pure P and converted PSV reflections but the estimation of the SH-wave symmetry-direction horizontal velocity requires the acquisition of pure shear data. The radiation-pattern analysis also shows that it may be possible to constrain density by inverting the pure- mode P- and S-waves. To verify the conclusions of the sensitivity analysis, we perform FWI of the vertical displacement generated for two horizontal orthorhombic layers beneath a VTI overburden.

Keywords
full-waveform inversion
anisotropy
orthorhombic symmetry
elastic media
multicomponent data
radiation patterns
References
  1. Albertin, U., Shen, P., Sekar, A., Johnsen, T., Wu, C., Nihei, K. and Bube, K., 2016.
  2. 3D orthorhombic elastic full-waveform inversion in the reflection domain from
  3. hydrophone data. Expanded Abstr., 86th Ann. Internat. SEG Mtg., Dallas: 1094-
  4. Alkhalifah, T. and Plessix, R.-E., 2014 A recipe for practical full-waveform inversion
  5. in anisotropic media: An analytical parameter resolution study. Geophysics,
  6. 79(3): R91-R101.
  7. Bakulin, A., Grechka, V. and Tsvankin, I., 2000a. Estimation of fracture parameters from
  8. reflection seismic data — Part I: HTI model due to a single fracture set.
  9. Geophysics, 65: 1788-1802.
  10. Bakulin, A., Grechka, V. and Tsvankin, I., 2000b. Estimation of fracture parameters from
  11. reflection seismic data — Part II: Fractured models with orthorhombic symmetry.
  12. Geophysics, 65: 1803-1817.
  13. Duan, Y. and Sava, P., 2015. Scalar imaging condition for elastic reverse time migration.
  14. Geophysics, 80(4): $127-S136.
  15. Gholami, Y. Brossier, R., Operto, S., Ribodetti, A. and Virieux, J., 2013. Which
  16. parametrization for acoustic VTI full waveform inversion? Part 1: Sensitivity and
  17. trade-off analysis. Geophysics, 78(2): R81-R105.
  18. Grechka, V. and Tsvankin, I., 1999. 3-D moveout velocity analysis and parameter
  19. estimation for orthorhombic media. Geophysics, 64: 820-837.
  20. Grechka, V. and Tsvankin, I., 2002. NMO-velocity surfaces and Dix-type formulas in
  21. anisotropic heterogeneous media. Geophysics, 67: 939-951.
  22. Hale D., 2010. Image-guided 3D interpolation of borehole data. Expanded Abstr., 80th
  23. Ann. Internat. SEG Mtg., Denver: 1266-1270.
  24. Ibanez-Jacome, W., Alkhalifah, T. and Waheed, U.B., 2014. Effective orthorhombic
  25. anisotropic models for wavefield extrapolation. Geophys. J. Internat., 198: 1653-
  26. Ivanov, Y. and Stovas, A., 2017. Traveltime parameters in tilted orthorhombic media.
  27. Geophysics, 82(6): C187-C200.
  28. Kazei, V. and Alkhalifah, T., 2019. Scattering radiation pattern atlas: what anisotropic
  29. elastic properties can body waves resolve? J. Geophys. Res., 124: 2781-2811.
  30. Kamath, N. and Tsvankin, I., 2016. Elastic full-waveform inversion for VTI media:
  31. Methodology and sensitivity analysis. Geophysics, 81(2): C53-C68.
  32. Kamath, N., Tsvankin, I. and Diaz, E., 2017. Elastic full-waveform inversion for VTI
  33. media: A synthetic parameterization study. Geophysics, 82(5): C163-C174.
  34. Liu, Q. and Tsvankin, I., 2019. Stacking-velocity tomography for tilted orthorhombic
  35. media. Geophysics, 84(3): C171-C180.
  36. Liu, Q. and Tromp, J., 2006. Finite frequency kernels based on adjoint methods. Bull.
  37. Seismol. Soc. Am., 96: 2383-2397.
  38. Li, Y., Han, W., Chen, C.-S. and Huang, T., 2012. Velocity model building for tilted
  39. orthorhombic depth imaging. Expanded Abstr., 82nd Ann. Internat. SEG Mtg.,
  40. Las Vegas: 1-5.
  41. Maitra, S., Basir, F.F., Ghazali, M.L., Ghazali, A.R., Sapiai, S.M., El-K., N. and Konuk,
  42. T., 2018. Orthorhombic full-waveform inversion and model building for
  43. azimuthal anisotropy in the presence of gas bodies. Expanded Abstr., 88th Ann.
  44. Internat. SEG Mtg., Anaheim: 5123-5127.
  45. Masmoudi, N. and Alkhalifah, T., 2018. Full-waveform inversion in acoustic ortho-
  46. rhombic media and application to a North Sea data set. Geophysics, 83(5): C179-
  47. C193.
  48. Moradi, S. and Innanen, K.A., 2019. Azimuthally-dependent scattering potentials and
  49. full-waveform inversion sensitivities in low-loss viscoelastic orthorhombic media.
  50. J. Geophys. Engineer., 16: 367-388.
  51. Moradi, S. and Innanen, K.A., 2017. Born scattering and inversion sensitivities in
  52. viscoelastic transversely isotropic media. Geophys. J. Internat., 211: 1177-1188.
  53. Oh, J-W. and Alkhalifah, T., 2016. Elastic orthorhombic anisotropic parameter inversion:
  54. An analysis of parameterization. Geophysics, 81(6): C279-C293.
  55. Oh, J-W. and Alkhalifah, T., 2019. Study on the full-waveform inversion strategy for 3D
  56. elastic orthorhombic anisotropic media: application to ocean bottom cable data.
  57. Geophys. Prosp., 67: 1219-1242.
  58. Operto, S., Gholami, Y., Ribodetti, A., Brossier, R., Metivier, L., and Virieux, J., 2013. A
  59. guided tour of multiparameter full waveform inversion with multicomponent data:
  60. From theory to practice. The Leading Edge, 32: 1040-1054.
  61. Pan, W., Innanen, K., Fehler, M., Margrave, G. and Fang, X., 2014. FWI inversion
  62. sensitivities of the elastic stiffness coefficients in fractured media: analytic results.
  63. CREWES Res. Report, 26.
  64. Prieux, V., Brossier, R., Operto, S. and Virieux, J., 2013. Multiparameter full waveform
  65. inversion of multicomponent ocean-bottom-cable data from the Valhall field. Part
  66. 1: imaging compressional wave speed, density and attenuation. Geophys. J.
  67. Internat., 194: 1640-1664.
  68. Plessix, R.-E. and Mulder, W.A., 2004. Frequency-domain finite-difference amplitude-
  69. preserving migration. Geophys. J. Internat., 157: 975-987.
  70. Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods in
  71. frequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
  72. Rodriguez-Herrera, A., Koutsabeloulis, N. and Zdraveva, O., 2014. Modeling
  73. orthorhombic velocity perturbations around salt domes in the Gulf of Mexico.
  74. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 458-462.
  75. Rocha, D., Tanushev, N. and Sava, P., 2017. Anisotropic elastic wavefield imaging using
  76. the energy norm. Geophysics, 82(3): $225-S234.
  77. Ruger, A., 1997. P-wave reflection coefficients for transversely isotropic models with
  78. vertical and horizontal axis of symmetry. Geophysics, 62: 713-722.
  79. Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wave
  80. behavior in a vertically fractured earth. Geophysics, 62: 1954-1974.
  81. Shaw, R.K. and Sen, M.K., 2004. Born integral, stationary phase and linearized reflection
  82. coefficients in weak anisotropic media. Geophys. J. Internat., 150: 225-238.
  83. Singh, S., Tsvankin, I. and Zabihi Naeini, E., 2018. Bayesian framework for elastic full-
  84. waveform inversion with facies information. The Leading Edge, 37: 924-931.
  85. Singh, S., Tsvankin, I. and Zabihi Naeini, E., 2020. Full-waveform inversion for elastic
  86. VTI media with borehole constraints. Geophysics, 85(6): R553-R563.
  87. Singh, S., Tsvankin, I. and Zabihi Naeini, E., 2021. Elastic FWI for orthorhombic media
  88. with lithologic constraints applied via machine learning. Geophysics, 86(4):
  89. R589-R602.
  90. Singh, S. and Tsvankin, I., 2020. Sensitivity analysis of FWI for elastic orthorhombic
  91. media. Expanded Abstr., 88th Ann. Internat. SEG Mtg., Houston: 171-175.
  92. Song, X. and Alkhalifah, T., 2013. Modeling of pseudo-acoustic P-waves in
  93. orthorhombic media with a lowrank approximation. Geophysics, 74(4): C33-C40.
  94. Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
  95. Geophysics, 51: 1893-1903.
  96. Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media.
  97. Geophysics, 62: 1292-1309.
  98. Tsvankin, I., 2012,. Seismic Signatures and Analysis of Reflection Data in Anisotropic
  99. Media, 3rd ed. SEG, Tulsa, OK.
  100. Tsvankin, I. and Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and
  101. Seismic Fracture Characterization. SEG, Tulsa, OK.
  102. Vasconcelos, I. and Tsvankin, I., 2006. Nonhyperbolic moveout inversion of wide
  103. azimuth P-wave data for orthorhombic media. Geophys. Prosp., 54: 535-552.
  104. Vigh, D., Jiao, K., Watts, D. and Sun, D., 2014. Elastic full-waveform inversion
  105. application using multicomponent measurements of seismic data collection.
  106. Geophysics, 79(2): R63-R77.
  107. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration
  108. geophysics. Geophysics, 74(6): WCC1-WCC26.
  109. Wang, H. and Tsvankin, I., 2018. Methodology of waveform inversion for acoustic
  110. orthorhombic media. J. Seismic Explor., 27: 201-226.
  111. Wang, X. and Tsvankin, I., 2013a. Multiparameter TTI tomography of P-wave reflection
  112. and VSP data. Geophysics, 78(5): WC51-WC63.
  113. Wang, X. and Tsvankin, I., 2013b. Ray-based gridded tomography for tilted transversely
  114. isotropic media. Geophysics, 78(1): C11-C23.
  115. Xie, Y., Zhou, B., Zhou, J., Hu, J., Xu, L., Wu, X., Lin, N., Loh, F-C., Liu, L. and Wang,
  116. Z., 2013. Orthorhombic full-waveform inversion for imaging the Luda field using
  117. wide-azimuth ocean-bottom-cable data. The Leading Edge, 36: 75-80.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing