ARTICLE

Wavefield reconstructed least-square reverse time migration based on stable pure qP-wave equation in tilted transversely isotropic media

YI DING1,2 ZHENCHUN LI1,2 KAI ZHANG1,2 YUNYUN SANG3
Show Less
1 School of Geoscience, China University of Petroleum, Qingdao 266555, P.R. China.,
2 Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266555, P.R. China.,
3 Data Processing Center, Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Zhuozhou 072750, P.R. China.,
JSE 2022, 31(3), 279–303;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The anisotropy of underground media is an important physical property that affecting the propagation of seismic wave. It generally exists in sedimentary strata. Therefore, this property should not be ignored in the process of exploration seismic imaging. Vertical transversely isotropic (VTI) hypothesis ignores the influence of original stratum tilt on anisotropy. Although it remedies the defect of acoustic hypothesis to a certain extent, it is difficult to accurately describe the propagation of seismic wave in most cases, leading to serious imaging footprints in reverse time migration (RTM) and least-squares reverse time migration (LSRTM) based on two-way wave equation. LSRTM can hardly eliminate them by iterations or denoising in frequency domain. Tilted transversely isotropic (TTI) pseudoacoustic equation is a strategy that can be considered, but the assumption that shear wave velocity is zero brings serious numerical errors to the coupled equation under complex anisotropic conditions. We use a stable pure pseudoacoustic wave equation to simulate wavefield in TTI media and apply it to LSRTM. On this basis, the wavefield reconstruction algorithm in TTI media is further derived to constrain the inversion process of LSRTM. Our algorithm can suppress the artifacts of high-order scattering wave, and accelerate the convergence of objective function. Experiments show that our method can achieve images with high signal-to-noise ratio (SNR) under TTI condition.

Keywords
tilted transversely isotropic media
least-squares reverse time migration
wavefield reconstruction
References
  1. Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media. Geophysics, 65:
  2. 1239-1250.
  3. Dai, W., Boonyasiriwat, C. and Schuster, G.T., 2010. 3D multi-source least-squares
  4. reverse time migration. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver:
  5. 3120-3124.
  6. Dai, W. and Schuster, G.T., 2013. Plane-wave least-squares reverse-time migration.
  7. Geophysics, 78(4): $165-S177.
  8. Dai, W., Xu, Z. and Coates, R., 2015. Least-squares reverse-time migration for
  9. visco-acoustic media. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New
  10. Orleans.
  11. Dutta, G. and Schuster, G.T., 2014. Attenuation compensation for least-squares reverse
  12. time migration using the viscoacoustic-wave equation. Geophysics, 79(6):
  13. $251-S262.
  14. Duveneck, E., Milcik, P., Bakker, P.M. and Perkins, C., 2008. Acoustic VTI wave
  15. equations and their application for anisotropic reverse time migration. Expanded
  16. Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 3713.
  17. Duveneck, E. and Bakker, P.M., 2011. Stable P-wave modeling for reverse-time
  18. migration in tilted TI media. Geophysics, 76(2): S65-S75.
  19. Fletcher, R., Du, X. and Fowler, P.J., 2008. A new pseudo-acoustic wave equation for
  20. VTI media. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas.
  21. Fletcher, R.P., Du, X. and Fowler, P.J., 2009a. Reverse time migration in tilted
  22. transversely isotropic (TTI) media. Geophysics, 74(6), WCA179.
  23. Fletcher, R., Xiang, D. and Fowler, P.J., 2009b. Stabilizing acoustic reverse time
  24. migration in TTI media. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston.
  25. Fowler, P.J., Du, X. and Fletcher, R.P., 2010. Coupled equations for reverse time
  26. migration in transversely isotropic media. Geophysics, 75(1): S11-S22.
  27. Grechka, V., Zhang, L. and Rector, J., 2004. Shear waves in acoustic anisotropic media.
  28. Geophysics, 69: 576-582.
  29. Hestholm, S., 2009. Acoustic VTI modeling using high-order finite differences.
  30. Geophysics, 74(5): T67-T73.
  31. Huang, J., Si, D., Li, Z. and Huang, J., 2016. Plane-wave least-squares reverse time
  32. migration in complex VTI media. Expanded Abstr., 86th Ann. Internat. SEG Mtg.
  33. Dallas.
  34. Lambaré, G., Virieux, J., Madariaga, R. and Jin, S., 1992. Iterative asymptotic inversion
  35. in the acoustic approximation. Geophysics, 57: 1138-1154.
  36. Li, Z., Lin, Y., Zhang, K., Li, Y. and Yu, Z., 2017. Time-domain wavefield reconstruction
  37. inversion. Appl. Geophys., 14: 523-528.
  38. Lin, Y., Li, Z., Zhang, K. and Ding, R., 2020. Least-squares reverse time migration with
  39. first-order scattering wave equation penalty. Explor. Geophys., 52: 68-76.
  40. doi: 10.1080/08123985.2020.1767503.
  41. Lin, Y., Li, Z., Zhang, K. and Li, Y., 2018. Time domain wavefield reconstruction
  42. inversion based on new penalty scalar algorithm. Chinese J. Geophys. — Chin. Ed.,
  43. 61: 4100-4109. doi: 10.6038/cjg2018L0760.
  44. Mu, X., Huang, J., Yang, J., Guo, X. and Guo, Y., 2020a. Least-squares reverse-time
  45. migration in TTI media using a pure qP-wave equation. Geophysics, 85(4):
  46. S199-S216.
  47. Mu, X., Huang, J., Yong, P., Huang, J. and Hu, Z., 2020b. Modeling of pure qP- and
  48. qSV-waves in tilted transversely isotropic media with the optimal quadratic
  49. approximation. Geophysics, 85(2): C71- C89.
  50. Nemeth, T., Wu, C. and Schuster, G.T., 1999. Least-squares migration of incomplete
  51. reflection data. Geophysics, 64: 208-221.
  52. Plessix, R.E., 2006. A review of the adjoint-state method for computing the gradient of a
  53. functional with geophysical applications. Geophys. J. Roy. Astron. Soc., 167:
  54. 495-503.
  55. Ren, Z., Liu, Y. and Sen, M., 2017. Least-squares reverse time migration in elastic media.
  56. Geophys. J. Internat., 208: 1103-1125. doi: 10.1093/gji/ggw443.
  57. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.
  58. Geophysics, 49: 1259-1266.
  59. Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter
  60. Estimation. SIAM, Philadelphia. doi:10.1137/1.9780898717921.
  61. Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in Anisotropic
  62. Media, 3rd ed. SEG, Tulsa, OK. 10.1190/1.9781560803003, 431-438.
  63. Uhsenbach, C. and Bale, R., 2009. TTI wave-equation migration for Canadian foothills
  64. depth imaging. The Leading Edge, 28: 1344-1355.
  65. van Leeuwen, T. and Herrmann, F.J., 2013. Mitigating local minima in full-waveform
  66. inversion by expanding the search space. Geophys. J. Internat., 195: 661-667.
  67. Wang, C., Yingst, D., Farmer, P. and Leveille, J., 2016. Full-waveform inversion with
  68. the reconstructed wavefield method. Expanded Abstr., 86th Ann. Internat. SEG
  69. Mtg., Dallas.
  70. Zhan, G., Pestana, R.C. and Stoffa, P.L., 2012. Decoupled equations for reverse time
  71. migration in tilted transversely isotropic media. Geophysics, 77(2): T37-T45.
  72. Zhang, Y., Zhang, G. and Bleistein, N., 2003. True amplitude wave equation migration
  73. arising from true amplitude one-way wave equations. Inverse Probl., 19: 1113.
  74. Zhang, H., Yu, Z. and Zhang, G., 2011. A stable TTI reverse time migration and its
  75. implementation. Geophysics, 76(3): WA3-WAL1.
  76. Zhou, H., Zhang, G. and Bloor, R., 2006. An anisotropic acoustic wave equation for
  77. modeling and migration in 2D TTI media. Expanded Abstr., 76th Ann. Internat.
  78. SEG Mtg., New Orleans.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing