ARTICLE

Statistical characteristics for the background noise in distributed acoustic sensing: analysis and application to suppression

T. ZHONG1,2 Y. CHEN2 X.T. DONG3 Y. LI4,* N. WU4
Show Less
1 Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Jilin 132012, P.R. China,
2 Northeast Electric Power University, Department of Communication Engineering, Jilin 132012, P.R. China,
3 Jilin University, College of Instrumentation and Electrical Engineering, Changchun 130026, P.R. China,
4 Jilin University, Department of Information Engineering, Changchun 130026, P.R. China,
JSE 2022, 31(2), 131–151;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhong, T., Chen, Y., Dong, X.T., Li, Y. and Wu, N., 2022. Statistical characteristics for the background noise in distributed acoustic sensing: analysis and application to suppression. Journal of Seismic Exploration, 31: 131-151. Distributed acoustic sensing (DAS) is a novel technology that utilizes a fiber-optic cable instead of geophones, which has attracted increasing attention in seismic data acquisition. However, owing to the existence of background noise, the current quality of the DAS records requires improvement. In this study, the stationarity and spectral characteristics for DAS background noise are investigated. Additionally, the dataset used for the analysis is collected while satisfying the practical requirements of the exploration industry. The results demonstrate that the DAS background noise is a broadband interference with local stationarity. On this basis, an adaptive time-frequency peak filtering (TFPF) algorithm is proposed to attenuate the background noise. Unlike traditional TFPF algorithms, this improved method adaptively chooses appropriate filtering parameters instead of using a fixed parameter set to the whole seismic record to achieve better attenuation performance. Specifically, the signal and noise segments can be recognized by taking advantage of the differences in stationarity. Consequently, we can adaptively select different filtering parameters for signal and noise segments to get better performance in noise attenuation and signal restoration. Synthetic and field data experimental results indicate that the proposed adaptive TFPF algorithm can suppress the DAS background noise and accurately recover the reflection events, especially under low signal-to-noise ratio conditions.

Keywords
distributed acoustic sensing
background noise attenuation
time-frequency peak filtering
seismic data processing
References
  1. Ardekani, I.T. and Abdulla, W.H., 2013. Stochastic modelling and analysis of
  2. filtered-xleast-mean-square adaptation algorithm. IET Sign. Process., 7: 486-496.
  3. Azerad, P., Bouharguane, A. and Crouzet, J.F., 2012. Simultaneous denoising and
  4. enhancement of signals by a fractal conservation law. Commun. Nonlinear. Sci., 17:
  5. 867-811.
  6. Bayram, M. and Baraniuk, R., 2000. Multiple window time-varying spectrum estimation.
  7. In: Fitzgerald, W.J. (Ed.), Nonlinear and Nonstationary Signal Processing.
  8. Cambridge University Press, Cambridge: 292-316.
  9. Bellefleur, G , Schetselaar, E., Wade, D., White, D., Enkin, R. and Schmitt, D.R., 2020.
  10. Vertical seismic profiling using Distributed Acoustic Sensing (DAS) with
  11. scatter-enhanced fibre-optic cable at the Cu-Au new Afton Porphyry deposit, British
  12. Columbia, Canada. Geophys. Prosp., 68: 313-333.
  13. Binder, G., Titov A., Liu Y., Simmons, J. and Monk, D., 2020. Modeling the seismic
  14. response of individual hydraulic fracturing stages observed in a time-lapse DAS
  15. VSP survey. Geophysics, 85(4): T225-T235.
  16. Boashash, B. and Mesbah, M., 2004. Signal enhancement by time-frequency peak
  17. filtering. IEEE Transact. Signal Process., 52: 929-937.
  18. Chatfield, C., 2003. The Analysis of Time Series: An Instruction, 6th ed.. Chapman and
  19. Hall/CRC Press, Houston.
  20. Correa, J., Egorov, A., Tertyshnikov, K., Bona, A. and Pevzner, R., 2017. Analysis of
  21. signal to noise and directivity characteristics of DAS VSP at near and far offsets - a
  22. CO2CRC Otway Project data example. The Leading Edge, 36: 994a1—994a7.
  23. Daley, T.M., Miller, D.E., Dodds, K., Cook, P. and Freifeld, B. M., 2016. Field testing of
  24. modular borehole monitoring with simultaneous distributed acoustic sensing and
  25. geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prosp., 64:
  26. 1318-1334.
  27. Dong, X., Li, Y., Wu, N., Tian, Y. and Yu, P., 2018. The S-STK/LTK algorithm for
  28. arrival time picking of microseismic signals. J. Geophys. Engineer., 15:
  29. 1484-1491.150
  30. Egorov, A., Correa, J., Bona, A., Pevzner, R., Tertyshnikov, K., Glubokovskikh, S.,
  31. Puzyev, V. and Gurevich, B., 2018. Elastic full waveform inversion of vertical
  32. seismic profile data acquired with distributed acoustic sensors. Geophysics, 83(3),
  33. R273-R281.
  34. Flandrin, P., Rilling, G., Goncalves, P., 2014. Empirical mode decomposition as a filter
  35. bank. IEEE Signal Process. Lett., 11: 112-114.
  36. Gang, Y., Zhidong, C., Yuanzhong, C., Wang, X., Zhang, Q., Li, Y., Wang, Y., Liu, C.,
  37. Zhao, B. and Joe, G., 2018. Borehole seismic survey using multimode optical fibers
  38. in a hybrid wireline. Measurement, 125: 694-703.
  39. Gotz, J., Luth, S., Henninges, J. and Thomas, R., 2018. Vertical seismic profiling using
  40. daisy-chained deployment of fibre-optic cables in four wells simultaneously - case
  41. study at the Ketzin carbon dioxide storage site. Geophys. Prosp., 66: 1201-1214.
  42. Harris, K., White, D. and Samson, C., 2017. Imaging the Aquistore reservoir after 36
  43. kilotonnes of CO2 injection using distributed acoustic sensing. Geophysics, 82(6):
  44. M81-M96.
  45. Hartog, A.H., 2018. An Introduction to Distributed Optical Fibre Sensing. CRC Press,
  46. Houston. Jiang C., Li Y.. Wu N., et al. 2011. Radial-trace time-frequency peak
  47. filtering based on correlation integral. IEEE Geosci. Remote Sens. Lett., 11:
  48. 1594-1598.
  49. Karrenbach, M., Cole, S., Ridge, A., Boone, K., Kahn, D., Rich, J., Silver, K. and Langto,
  50. D., 2019. Fiber-optic distributed acoustic sensing of microseismicity, strain and
  51. temperature during hydraulic fracturing. Geophysics, 84(1): D11-D23.
  52. Kobayashi, Y., Uematsu, Y., Mochiji, S. and Xue, Z., 2020. A field experiment of
  53. walkaway distributed acoustic sensing vertical seismic profile in a deep and
  54. deviated onshore well in Japan using a fibre optic cable deployed inside coiled
  55. tubing. Geophys. Prosp., 68: 501-520.
  56. Li, G., Li, Y. and Yang, B., 2017. Seismic exploration random noise on land: modeling
  57. and application to noise suppression. IEEE Transact. Geosci. Remote Sens., 55:
  58. 4668-4681.
  59. Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P.,
  60. Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z. and Detomo, R.,
  61. Distributed acoustic sensing for reservoir monitoring with vertical seismic
  62. profiling, Geophys. Prosp., 62: 679-692.
  63. Martins, H.F., Fernandez-Ruiz, M., Costa, L., Williams, E. and Gonzalez-Herraez. M..,,
  64. Monitoring of remote seismic events in metropolitan area fibers using
  65. distributed acoustic sensing (DAS) and spatiotemporal signal processing. Optical
  66. Fiber Communication Conference, San Diego.
  67. Meng, F., Li, Y., Wu, N. and Lin, H., 2015. A fractal conservation law for simultaneous
  68. denoising and enhancement of seismic data. IEEE Geosci. Remote Sens. Lett., 12:
  69. 374-378.
  70. Moghtaderi, A., Flandrin, P. and Borgnat, P., 2013. Trend filtering via empirical mode
  71. decompositions. Computat. Statist. Data Analys., 58: 114-126.
  72. Parker, T., Shatalin, S. and Farhadiroushan, M. 2014. Distributed acoustic sensing - a
  73. new tool for seismic applications. First Break , 32: 61-69.
  74. Poletto, F., Finfer, D., Corubolo, P. and Farina, B., 2016. Dual wavefields from
  75. distributed acoustic sensing measurements. Geophysics, 81(6): D585-D597.
  76. Riedel, M., Cosma, C., Enescu, N., Koivisto, E., Komminaho, K and Vaittinen, K., 2018.
  77. Underground vertical seismic profiling with conventional and fiber-optic systems
  78. for exploration in the Kylylahti Polymetallic Mine, Eastern Finland. Minerals, 8(11):
  79. Rodrigue, LV. and Wuestefeld, A., 2020. Strain microseismics: Radiation patterns,
  80. synthetics, and moment tensor resolvability with distributed acoustic sensing in
  81. isotropic media. Geophysics, 85(3): KS101-KS114.
  82. Soto, M.A., Ramirez, J. and Thévenaz, A.L., 2016. Intensifying the response of
  83. distributed optical fibre sensors using 2D and 3D image restoration. Nature
  84. Commun., 7: 10870.
  85. Souza, D., Chanussot, J., Favre, A.C. and Borgnat, P., 2013. A new nonparametric
  86. method for testing stationarity based on trend analysis in the time marginal
  87. distribution. IEEE International Conference on Acoustics, Speech and Signal
  88. Processing, 320-324.151
  89. Spikes, K.T., Tisato, N., Hess, T.E. and Holt, J.W., 2019. Comparison of geophone and
  90. surface-deployed distributed acoustic sensing seismic data. Geophysics, 84(2):
  91. A25-A29.
  92. Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proceedings of the
  93. IEEE, 70: 1055-1096.
  94. Verdon, J.P., Horne, S.A., Clarke, A., Stock, A.L. and Kendall, J.M., 2020. Microseismic
  95. monitoring using a fiber-optic distributed acoustic sensor array. Geophysics, 85(3):
  96. KS89-KS99.
  97. Wu, N., Li, Y. and Yang, B.J., 2011. Noise attenuation for 2-D seismic data by
  98. radial-trace time-frequency peak filtering. IEEE Geosci. Remote Sens. Lett., 8:
  99. 874-878.
  100. Zhang, C., Li, Y., Lin, H. and Yang, B., 2015. Signal preserving and seismic random
  101. noise attenuation by Hurst exponent based time—frequency peak filtering. Geophys.
  102. J. Internat., 203: 901-909.
  103. Zhong, T., Li, Y., Wu, N., Nie, P. and Yang, B., 2015. Statistical analysis of background
  104. noise in seismic prospecting. Geophys. Prosp., 60: 1161-1174.
  105. Zhong, T., Li, Y., Wu, N., Nie, P. and Yang, B., 2015. A study on the stationarity and
  106. Gaussianity of the background noise in land seismic prospecting. Geophysics, 80(4):
  107. V67-V82.
  108. Zhong, T., Zhang, S., Li, Y. and Yang, B., 2019. Simulation of seismic-prospecting
  109. random noise in the desert by a Brownian-motion-based parametric modeling
  110. algorithm. Compt. Rend. Geosci., 351: 10-16.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing