Statistical characteristics for the background noise in distributed acoustic sensing: analysis and application to suppression

Zhong, T., Chen, Y., Dong, X.T., Li, Y. and Wu, N., 2022. Statistical characteristics for the background noise in distributed acoustic sensing: analysis and application to suppression. Journal of Seismic Exploration, 31: 131-151. Distributed acoustic sensing (DAS) is a novel technology that utilizes a fiber-optic cable instead of geophones, which has attracted increasing attention in seismic data acquisition. However, owing to the existence of background noise, the current quality of the DAS records requires improvement. In this study, the stationarity and spectral characteristics for DAS background noise are investigated. Additionally, the dataset used for the analysis is collected while satisfying the practical requirements of the exploration industry. The results demonstrate that the DAS background noise is a broadband interference with local stationarity. On this basis, an adaptive time-frequency peak filtering (TFPF) algorithm is proposed to attenuate the background noise. Unlike traditional TFPF algorithms, this improved method adaptively chooses appropriate filtering parameters instead of using a fixed parameter set to the whole seismic record to achieve better attenuation performance. Specifically, the signal and noise segments can be recognized by taking advantage of the differences in stationarity. Consequently, we can adaptively select different filtering parameters for signal and noise segments to get better performance in noise attenuation and signal restoration. Synthetic and field data experimental results indicate that the proposed adaptive TFPF algorithm can suppress the DAS background noise and accurately recover the reflection events, especially under low signal-to-noise ratio conditions.
- Ardekani, I.T. and Abdulla, W.H., 2013. Stochastic modelling and analysis of
- filtered-xleast-mean-square adaptation algorithm. IET Sign. Process., 7: 486-496.
- Azerad, P., Bouharguane, A. and Crouzet, J.F., 2012. Simultaneous denoising and
- enhancement of signals by a fractal conservation law. Commun. Nonlinear. Sci., 17:
- 867-811.
- Bayram, M. and Baraniuk, R., 2000. Multiple window time-varying spectrum estimation.
- In: Fitzgerald, W.J. (Ed.), Nonlinear and Nonstationary Signal Processing.
- Cambridge University Press, Cambridge: 292-316.
- Bellefleur, G , Schetselaar, E., Wade, D., White, D., Enkin, R. and Schmitt, D.R., 2020.
- Vertical seismic profiling using Distributed Acoustic Sensing (DAS) with
- scatter-enhanced fibre-optic cable at the Cu-Au new Afton Porphyry deposit, British
- Columbia, Canada. Geophys. Prosp., 68: 313-333.
- Binder, G., Titov A., Liu Y., Simmons, J. and Monk, D., 2020. Modeling the seismic
- response of individual hydraulic fracturing stages observed in a time-lapse DAS
- VSP survey. Geophysics, 85(4): T225-T235.
- Boashash, B. and Mesbah, M., 2004. Signal enhancement by time-frequency peak
- filtering. IEEE Transact. Signal Process., 52: 929-937.
- Chatfield, C., 2003. The Analysis of Time Series: An Instruction, 6th ed.. Chapman and
- Hall/CRC Press, Houston.
- Correa, J., Egorov, A., Tertyshnikov, K., Bona, A. and Pevzner, R., 2017. Analysis of
- signal to noise and directivity characteristics of DAS VSP at near and far offsets - a
- CO2CRC Otway Project data example. The Leading Edge, 36: 994a1—994a7.
- Daley, T.M., Miller, D.E., Dodds, K., Cook, P. and Freifeld, B. M., 2016. Field testing of
- modular borehole monitoring with simultaneous distributed acoustic sensing and
- geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prosp., 64:
- 1318-1334.
- Dong, X., Li, Y., Wu, N., Tian, Y. and Yu, P., 2018. The S-STK/LTK algorithm for
- arrival time picking of microseismic signals. J. Geophys. Engineer., 15:
- 1484-1491.150
- Egorov, A., Correa, J., Bona, A., Pevzner, R., Tertyshnikov, K., Glubokovskikh, S.,
- Puzyev, V. and Gurevich, B., 2018. Elastic full waveform inversion of vertical
- seismic profile data acquired with distributed acoustic sensors. Geophysics, 83(3),
- R273-R281.
- Flandrin, P., Rilling, G., Goncalves, P., 2014. Empirical mode decomposition as a filter
- bank. IEEE Signal Process. Lett., 11: 112-114.
- Gang, Y., Zhidong, C., Yuanzhong, C., Wang, X., Zhang, Q., Li, Y., Wang, Y., Liu, C.,
- Zhao, B. and Joe, G., 2018. Borehole seismic survey using multimode optical fibers
- in a hybrid wireline. Measurement, 125: 694-703.
- Gotz, J., Luth, S., Henninges, J. and Thomas, R., 2018. Vertical seismic profiling using
- daisy-chained deployment of fibre-optic cables in four wells simultaneously - case
- study at the Ketzin carbon dioxide storage site. Geophys. Prosp., 66: 1201-1214.
- Harris, K., White, D. and Samson, C., 2017. Imaging the Aquistore reservoir after 36
- kilotonnes of CO2 injection using distributed acoustic sensing. Geophysics, 82(6):
- M81-M96.
- Hartog, A.H., 2018. An Introduction to Distributed Optical Fibre Sensing. CRC Press,
- Houston. Jiang C., Li Y.. Wu N., et al. 2011. Radial-trace time-frequency peak
- filtering based on correlation integral. IEEE Geosci. Remote Sens. Lett., 11:
- 1594-1598.
- Karrenbach, M., Cole, S., Ridge, A., Boone, K., Kahn, D., Rich, J., Silver, K. and Langto,
- D., 2019. Fiber-optic distributed acoustic sensing of microseismicity, strain and
- temperature during hydraulic fracturing. Geophysics, 84(1): D11-D23.
- Kobayashi, Y., Uematsu, Y., Mochiji, S. and Xue, Z., 2020. A field experiment of
- walkaway distributed acoustic sensing vertical seismic profile in a deep and
- deviated onshore well in Japan using a fibre optic cable deployed inside coiled
- tubing. Geophys. Prosp., 68: 501-520.
- Li, G., Li, Y. and Yang, B., 2017. Seismic exploration random noise on land: modeling
- and application to noise suppression. IEEE Transact. Geosci. Remote Sens., 55:
- 4668-4681.
- Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P.,
- Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z. and Detomo, R.,
- Distributed acoustic sensing for reservoir monitoring with vertical seismic
- profiling, Geophys. Prosp., 62: 679-692.
- Martins, H.F., Fernandez-Ruiz, M., Costa, L., Williams, E. and Gonzalez-Herraez. M..,,
- Monitoring of remote seismic events in metropolitan area fibers using
- distributed acoustic sensing (DAS) and spatiotemporal signal processing. Optical
- Fiber Communication Conference, San Diego.
- Meng, F., Li, Y., Wu, N. and Lin, H., 2015. A fractal conservation law for simultaneous
- denoising and enhancement of seismic data. IEEE Geosci. Remote Sens. Lett., 12:
- 374-378.
- Moghtaderi, A., Flandrin, P. and Borgnat, P., 2013. Trend filtering via empirical mode
- decompositions. Computat. Statist. Data Analys., 58: 114-126.
- Parker, T., Shatalin, S. and Farhadiroushan, M. 2014. Distributed acoustic sensing - a
- new tool for seismic applications. First Break , 32: 61-69.
- Poletto, F., Finfer, D., Corubolo, P. and Farina, B., 2016. Dual wavefields from
- distributed acoustic sensing measurements. Geophysics, 81(6): D585-D597.
- Riedel, M., Cosma, C., Enescu, N., Koivisto, E., Komminaho, K and Vaittinen, K., 2018.
- Underground vertical seismic profiling with conventional and fiber-optic systems
- for exploration in the Kylylahti Polymetallic Mine, Eastern Finland. Minerals, 8(11):
- Rodrigue, LV. and Wuestefeld, A., 2020. Strain microseismics: Radiation patterns,
- synthetics, and moment tensor resolvability with distributed acoustic sensing in
- isotropic media. Geophysics, 85(3): KS101-KS114.
- Soto, M.A., Ramirez, J. and Thévenaz, A.L., 2016. Intensifying the response of
- distributed optical fibre sensors using 2D and 3D image restoration. Nature
- Commun., 7: 10870.
- Souza, D., Chanussot, J., Favre, A.C. and Borgnat, P., 2013. A new nonparametric
- method for testing stationarity based on trend analysis in the time marginal
- distribution. IEEE International Conference on Acoustics, Speech and Signal
- Processing, 320-324.151
- Spikes, K.T., Tisato, N., Hess, T.E. and Holt, J.W., 2019. Comparison of geophone and
- surface-deployed distributed acoustic sensing seismic data. Geophysics, 84(2):
- A25-A29.
- Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proceedings of the
- IEEE, 70: 1055-1096.
- Verdon, J.P., Horne, S.A., Clarke, A., Stock, A.L. and Kendall, J.M., 2020. Microseismic
- monitoring using a fiber-optic distributed acoustic sensor array. Geophysics, 85(3):
- KS89-KS99.
- Wu, N., Li, Y. and Yang, B.J., 2011. Noise attenuation for 2-D seismic data by
- radial-trace time-frequency peak filtering. IEEE Geosci. Remote Sens. Lett., 8:
- 874-878.
- Zhang, C., Li, Y., Lin, H. and Yang, B., 2015. Signal preserving and seismic random
- noise attenuation by Hurst exponent based time—frequency peak filtering. Geophys.
- J. Internat., 203: 901-909.
- Zhong, T., Li, Y., Wu, N., Nie, P. and Yang, B., 2015. Statistical analysis of background
- noise in seismic prospecting. Geophys. Prosp., 60: 1161-1174.
- Zhong, T., Li, Y., Wu, N., Nie, P. and Yang, B., 2015. A study on the stationarity and
- Gaussianity of the background noise in land seismic prospecting. Geophysics, 80(4):
- V67-V82.
- Zhong, T., Zhang, S., Li, Y. and Yang, B., 2019. Simulation of seismic-prospecting
- random noise in the desert by a Brownian-motion-based parametric modeling
- algorithm. Compt. Rend. Geosci., 351: 10-16.