ARTICLE

Numerical simulation in a wave tank filled with sand

MAMDOH ALAJMI1 JOSÉ M. CARCIONE2,3 AYMAN N. QADROUH1 JING BA3*
Show Less
1 SAC - KACST, P.O. Box 6086, Riyadh 11442, Saudi Arabia.,
2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy.,
3 School of Earth Sciences and Engineering, Hohai University, Nanjing, 211100, P.R. China.,
JSE 2020, 29(3), 247–260;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Alajmi, M., Carcione, J.M., Qadrouh, A.N. and Ba, J., 2020. Numerical simulation in a wave tank filled with sand. Journal of Seismic Exploration, 29: 247-260. We develop a pseudospectral modeling algorithm for wave propagation in anelastic media with Dirichlet and Neumman boundary conditions. The method also allows to set non-reflecting boundaries. The modeling can be adapted to laboratory experiments, namely the implementation of free-surface, rigid and non-reflecting boundary conditions at the model boundaries, as for instance, a tank to perform physical modeling. The time-domain equations for propagation in a viscoelastic medium are described by the Zener mechanical model, that gives relaxation and creep functions in agreement with experimental results. The algorithm is based on a two-dimensional Chebyshev differential operator for solving the viscoelastic wave equation. The technique allows the implementation of non-periodic boundary conditions at the four boundaries of the numerical mesh, which requires a special treatment of these conditions based on one-dimensional characteristics. In addition, spatial grid adaptation by appropriate one-dimensional coordinate mappings allows a more accurate modeling of complex media, and reduction of the computational cost by controlling the minimum grid spacing. An example is shown, where we compute microseismograms in a tank filled with lossy sand.

Keywords
wave tank
Dirichlet conditions
Neumann conditions
anelasticity
full-wave modeling
References
  1. Al-Shuhail, A.A., Alsaleh, M.H. and Sanuade, O.A., 2018. Analysis of time-depth data in
  2. sand dunes from the empty quarter desert of Southeastern Saudi Arabia. Arab. J. Sci.
  3. Engineer. doi.org/10.1007/s13369-018-3178-2
  4. Barriére, J., Bordes, C., Brito, D., Sénéchal, P. and Perroud, H., 2012. Laboratory
  5. monitoring of P waves in partially saturated sand. Geophys. J. Internat., 191:
  6. 1152-1170.
  7. Berg, P., If, F., Nielsen, P. and Skovgaard, O., 1994. Analytical reference solutions. In:
  8. Helbig, K. (Ed.), Modeling the Earth for Oil Exploration. Pergamon Press, Oxford:
  9. 421-427.
  10. Bergamo, P., Bodet, L., Socco, L.V., Mourgues, R. and Tournat, V., 2014. Physical
  11. modelling of a surface-wave survey over a laterally varying granular medium with
  12. property contrasts and velocity gradients, Geophys. J. Internat., 197: 233-247.
  13. Carcione, J.M., 1996. A 2-D Chebyshev differential operator for the elastic wave equation,
  14. Comput. Meth. Appl. Mech. Engineer., 130: 33-45.
  15. Carcione, J.M., Herman, G. and ten Kroode, F.P.E., 2002. Seismic modeling, Geophysics,
  16. 67: 1304-1325.
  17. Carcione, J.M., 2014. Wave fields in real media: Wave propagation in anisotropic,
  18. anelastic, porous and electromagnetic media. Handbook of Geophysical Exploration,
  19. Vol. 38, 3rd revised, extended ed., Elsevier Science Publishers, Amsterdam.
  20. Carcione, J.M., Bagaini, C., Ba, J. Wang, E. and Vesnaver, A., 2018. Waves at fluid-solid
  21. interfaces: Explicit versus implicit formulation of the boundary condition. Geophys. J.
  22. Internat., 215: 37-48,
  23. De Angelis, M., Giannini, R. and Paolacci, F., 2010. Experimental investigation on the
  24. seismic response of a steel liquid storage tank equipped with floating roof by shaking
  25. table tests. Earthq. Engineer. Struct. Dyn., 39: 377-396.
  26. Fagin, S.W., 1992. Seismic Modeling of Geological Structures: Applications to
  27. Exploration Problems. Geophys. Develop. Series, Vol. 2. SEG, Tulsa, OK.
  28. Farina, B., Poletto, F. and Carcione, J.M., 2017. Synthetic waveforms of axial motion in a
  29. borehole with drill string, J. Acoust. Soc. Am., 141: 828-839.
  30. Kosloff, D, and,Tal-Ezer, H., 1993. A modified Chebyshev pseudospectral method with
  31. an o(N*) time step restriction. J. Comput. Phys., 104: 457-469.
  32. Krawczyk, C.M., Buddensiek, M.-L., Oncken, O. and Kukowski, N., 2013. Seismic
  33. imaging of sandbox experiments-laboratory hardware setup and first reflection
  34. seismic sections, Solid Earth, 4: 93-104.
  35. Lie, I., 1991. Ocean/bottom acoustic interaction with arbitrary bottom profile.
  36. FFI/Report-9 1/7009, NDRE.
  37. Prasad, M. and Meissner, R., 1992. Attenuation mechanisms in sands: Laboratory versus
  38. theoretical (Biot) data. Geophysics, 57: 710-719.
  39. Sherlock, D.H., 1999. Seismic Imaging of Sandbox Models. Ph.D. thesis, Curtin
  40. University of Technology, Perth.
  41. Sherlock, D.H. and Evans, B.J., 2001. The development of seismic reflection sandbox
  42. modelling, AAPG Bull., 85: 1645-1659.
  43. Smolkin, D., 2011. Laboratory scale seismic analysis of a spatially variable hydrological
  44. surface in unconfined, unconsolidated sand. M.Sc.thesis, Louisiana State University,
  45. Baton Rouge, LA.
  46. Solymosi, B., Favretto-Cristini, N., Monteiller, V., Komatitsch, D., Cristini, P., Arntsen, B.
  47. and Ursin, B., 2018. How to adapt numerical simulation of wave propagation and
  48. ultrasonic laboratory experiments to be comparable - A case study for a complex
  49. topographic model. Geophysics, 83(4): T195-T207.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing