ARTICLE

Seismic full-waveform inversion using decomposed P-wavefield

SOOYOON KIM1 WOOKEEN CHUNG2 SUNGRYUL SHIN2 DAWOON LEE1
Show Less
1 Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea.,
2 Department of Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea.,
JSE 2020, 29(3), 201–224;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Kim, S.Y., Chung, W.K., Shin, S.R. and Lee, D.W.. 2020. Seismic full-waveform inversion using decomposed P-wavefield. Journal of Seismic Exploration, 29: 201-224. Here we describe the development of a seismic full-waveform inversion method which employs P-wavefield decomposition to obtain accurate velocity information. Briefly, P-wavefield decomposition for multi-component data was performed with Helmholtz decomposition in elastic media and an objective function. To achieve efficient inversion, application of a back-propagation technique is essential. Therefore, a stress tensor was used for P-wavefield decomposition to allow application of a back- propagation technique. Our proposed inversion algorithm was validated with synthetic data obtained from the Marmousi2 velocity model which simulated an ocean bottom, multi-component survey. The subsurface information obtained with our inversion method was more accurate in regard to velocity and structure compared with a conventional elastic inversion method. In addition. the application of our inversion method to synthetic data simulating an ocean bottom seismometer survey which uses a small number of receivers also obtained better results in a numerical test.

Keywords
full-waveform inversion
P-wavefield decomposition
multi-component
elastic
References
  1. Amundsen, L., Ikelle, L. and Martin, J., 1998. Multi attenuation and P/S splitting of OBC
  2. data: A heterogeneous sea floor. Expanded Abstr., 68th Ann. Internat. SEG
  3. Mtg., New Orleans: 722-725.
  4. Claerbout, J.F. and Muir, F., 1973. Robust modeling with erratic data. Geophysics, 38:
  5. 826-844.
  6. Crase, E., Pica, A., Nobel, M., McDonald, J. and Tarantola, A., 1990. Robust elastic
  7. nonlinear waveform inversion: Application to real data. Geophysics, 55: 527-
  8. Choi, Y., Min, D. and Shin, C., 2008. Frequency-domain full waveform inversion using
  9. the new pseudo-Hessian matrix: Experience of elastic Marmousi-2 synthetic
  10. data. Bull. Seismol. Soc. Am., 98: 2402-2415.
  11. Chung, W., Pyun, S., Bae, H., Shin, C. and Marfurt, K.J., 2012. Implementation of
  12. elastic reverse-time migration using wavefield separation in the frequency
  13. domain. Geophys. J. Internat., 189: 1611-1625.
  14. Dankbaar, M., 1987. Vertical seismic profiling - separation of P- and S-waves. Geophys.
  15. Prosp., 35: 803-814.
  16. Dellinger, J. and Etgen, J.. 1990. Wave-field separation in two-dimensional anisotropic
  17. media. Geophysics, 55: 914-919.
  18. Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion
  19. of seismic waveforms: Numerical results. Geophysics, 51: 1387-1403.
  20. Ha. T.. Chung. W. and Shin. C.. 2009. Waveform inversion using a back-propagation
  21. algorithm and a Huber function norm. Geophysics, 74(3): R15-R24.
  22. Ha, J., Shin, S., Shin, C. and Chung, W., 2015. Efficient elastic reverse-time migration
  23. for the decomposed P-wavefield using stress tensor in the time domain. J. Appl.
  24. Geophys., 116: 121-134.
  25. Jeong, W., Lee, H. and Min, D., 2012. Full waveform inversion strategy for density in
  26. the frequency domain. Geophys. J. Internat., 188: 1221-1242.
  27. Kolb, P., Collino, F. and Lailly, P., 1986. Pre-stack inversion of a 1-D medium. Proc.
  28. IEEE, 74: 498-508.
  29. Lee. H., Koo, J.. Min, D.. Kwon, B. and Yoo, H.. 2010. Frequency-domain elastic full
  30. waveform inversion for VTI media. Geophys. J. Internat., 183: 884-904.
  31. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migration.
  32. Conference on Inverse Scattering, Theory and Application, Soc. Industr. Appl.
  33. Mathemat., 206-220.
  34. Martin, G.. Wiley, R. and Marfurt, K.J.. 2006. Marmousi2: An elastic upgrade for
  35. Marmousi. The Leading Edge, 25: 156-166.
  36. Mora, P.. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.
  37. Geophysics, 52: 1211-1228.
  38. Operto, S., Gholami. Y., Prieux. V., Ribodetti, A.. Brossier, R.. Metivier, L. and Virieux,
  39. J., 2013. A guided tour of multiparameter full-waveform inversion with
  40. multicomponent data: From theory to practice. The Leading Edge, 32: 1040-
  41. Operto, S. and Miniussi, A., 2018. On the role of density and attenuation in three-
  42. dimensional multinarameter viscoacoustic VTI freauencv-domain FWI: An
  43. OBC case study from the North Sea. Geophys. J. Internat., 213: 2037-2059.
  44. Pan, W., Innanen, K.A., Yu, G. and Li, J., 2019. Interparameter trade-off quantification
  45. for isotropic-elastic full-waveform inversion with various model
  46. parameterizations. Geophysics, 84(2): R185-R206.
  47. Pratt. R.G.. 1990. Inverse theorv applied to multi-source cross-hole tomography. part 2:
  48. elastic wave-equation method. Geophys. Prosp., 38: 311-329.
  49. Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods in
  50. frequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-
  51. Sheen, D., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Time domain Gauss-Newton
  52. seismic waveform inversion in elastic media. Geophys. J. Internat., 167: 1373-
  53. Shin, C.. Yoon, K.. Marfurt, K.J.. Park, K.. Yang, D., Lim, H.Y.. Chung, S. and Shin.
  54. S.. 2001. Efficient calculation of a partial-derivative wavefield using reciprocity
  55. for seismic imaging and inversion. Geophysics, 66: 1856-1863.
  56. Shipp, R. and Singh, S., 2002. Two-dimensional full waveform inversion of wide-
  57. aperture marine seismic streamer data. Geophys. J. Internat., 151: 325-344.
  58. Sun, R.。 1999. Separating P- and S-waves in a prestack 2-dimensional elastic
  59. seismogram. Extended Abstr., 61st EAGE Conf., Helsinki: 6-23.
  60. Tarantola, A.. 1984. Inversion of seismic reflection data in the acoustic approximation.
  61. Geophysics, 49: 1259-1266.
  62. Yan, J. and Sava, P.. 2008. Isotropic angle-domain elastic reverse-time migration.
  63. Geophysics, 73(6), S229-S239.
  64. Yan, J. and Sava, P., 2009. Elastic wave-mode separation for VTI media. Geophysics,
  65. 74(5): WB19-WB32.
  66. Yan, J., 2010. Wave-mode Separation for Elastic Imaging in Transversely Isotropic
  67. Media. Ph.D. thesis, Colorado School of Mines, Golden, CO.
  68. Zhang, O. and McMechan, G.A., 2011. Common-image gathers in the incident phase-
  69. angle domain from reverse time migration in 2D elastic VTI media. Geophysics,
  70. 76(6): S197-S206.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing