AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025290038
ARTICLE

Dual-branch dense network for seismic background noise elimination

Wei Wang1 Haoliang Chen2 Dekuan Chang1 Xinyang Wang3* Shujiang Wang1 Dong Li1
Show Less
1 Geophysics Institute, Research Institute of Petroleum Exploration and Development-Northwest, PetroChina, Lanzhou, Gansu, China
2 Northeast Electric Power Design Institute CO., LTD. of China Power Engineering Consulting Group, Changchun, Jilin, China
3 Department of Communication Engineering, College of Electric Engineering, Northeast Electric Power University, Jilin City, Jilin, China
Submitted: 20 July 2025 | Revised: 23 October 2025 | Accepted: 24 October 2025 | Published: 24 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Distributed acoustic sensing (DAS) has attracted much attention in seismic data acquisition because of its low cost, anti-electromagnetic interference, and high acquisition density. Unfortunately, the acquired DAS records are usually accompanied by various kinds of complex noise, affecting subsequent interpretation and inversion. Traditional methods have difficulties in effectively attenuating the intense background noise. In general, the denoising task of DAS data is challenging. Recently, convolutional neural networks (CNNs) exhibit a good ability in suppressing the noise in DAS records. However, traditional CNN-based frameworks always have a relatively simple network architecture, bringing negative impacts on the denoising capability. To solve this problem, we propose a dual-branch dense network (DBD-Net) in this paper. Specifically, DBD-Net introduces a novel combination of dual-branch modules and an attention mechanism: the dual-branch modules extract multi-scale coarse-to-fine features, while the attention mechanism highlights the most informative features. This joint design strengthens feature representation and signal recovery compared with conventional CNN structures such as denoising CNN (DnCNN) and U-Net. Moreover, an attention module is employed to enhance the effective features. To verify the denoising ability, we compare DBD-Net with other competing methods, including band-pass filter, DnCNN, and U-Net, in terms of denoising capability and processing accuracy. Experimental results verify that DBD-Net can improve the quality of DAS records with a signal-to-noise ratio increment of nearly 26 dB. Meanwhile, the intense DAS background noise is also perfectly suppressed and the weak signals are effectively restored, representing advantages over the competing methods.

Keywords
Background noise suppression
Distributed acoustic sensing
Convolutional neural network
Vertical seismic profile
Signal-to-noise ratio improvement
Funding
This research was supported in part by the CNPC Science Research and Technology Development Project (2021DJ3505) and the Science and Technology Project of PetroChina Company Limited (2022KT1501).
Conflict of interest
Haoliang Chen is employed by Northeast Electric Power Design Institute CO., LTD. of the China Power Engineering Consulting Group. The remaining authors declare no conflict of interest.
References
  1. Ashry I, Mao Y, Alias MS, et al. Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. Appl Opt. 2019;58(18): 4933-4938. doi: 10.1364/AO.58.004933

 

  1. Ashry I, Mao Y, Wang B, et al. A review of distributed fiber-optic sensing in the oil and GAS industry. J Lightwave Technol. 2022;40(5):1407-1431. doi: 10.1109/JLT.2021.3135653

 

  1. Zhong T, Cheng M, Dong X, Li Y, Wu N. Seismic random noise suppression by using deep residual U-Net. J Petrol Sci Eng. 2022;209:109901. doi: 10.1016/j.petrol.2021.109901

 

  1. Zhong T, Wang W, Lu S, Dong X, Yang B. RMCHN: A residual modular cascaded heterogeneous network for noise suppression in DAS-VSP records. IEEE Geosci Remote Sens Lett. 2023;20:1-5. doi: 10.1109/LGRS.2022.3229556

 

  1. Cooper HW, Cook RE. Seismic data gathering. Proc IEEE. 1984;72(10):1266-1275.

 

  1. Zhang Z, Alajami M, Alkhalifah T. Wave-equation dispersion spectrum inversion for near-surface characterization using fiber-optics acquisition. Geophys J Int. 2020;222(2):907-918. doi: 10.1093/gji/ggaa211

 

  1. Spikes KT, Tisato N, Hess TE, Holt JW. Comparison of geophone and surface-deployed distributed acoustic sensing seismic data. Geophysics. 2019;84(2):A25-A29. doi: 10.1190/geo2018-0528.1

 

  1. Zhong T, Cheng M, Dong X, Wu N. Seismic random noise attenuation by applying multi-scale denoising convolutional neural network. IEEE Trans Geosci Remote Sens. 2022;60:590501. doi: 10.1109/TGRS.2021.3095922

 

  1. Dong X, Li Y. Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance. IEEE Trans Geosci Remote Sens. 2021;59(12): 10544-10554. doi: 10.1109/TGRS.2020.3036065

 

  1. Zhong T, Cheng M, Lu S, Dong X, Li Y. RCEN: A deep-learning-based background noise suppression method for DAS-VSP records. IEEE Geosci Remote Sens Lett. 2022;19:3004905. doi: 10.1109/LGRS.2021.3127637

 

  1. Stockwell R, Manisinba L, Lowe R. Localization of the complex spectrum: The S transform. IEEE Trans Signal Process. 1996;44(4):998-1001. doi: 10.1109/78.492555

 

  1. Liu N, Gao J, Zhang B, Wang Q, Jiang X. Self-adaptive generalized S-transform and its application in seismic time-frequency analysis. IEEE Trans Geosci Remote Sens. 2019;57(10):7849-7859. doi: 10.1109/TGRS.2019.2916792

 

  1. Bekara M, van der Baan M. Random and coherent noise attenuation by empirical mode decomposition. Geophysics. 2009;74(5):V89-V98.

 

  1. Guo K, Labate D. Optimally sparse multidimensional representation using shearlets. SIAM J Math Anal. 2007;39(1):298-318. doi: 10.1137/060649781

 

  1. Houska R. The nonexistence of Shearlet scaling functions. Appl Computat Harmon Anal. 2012;32(1):28-44. doi: 10.1016/j.acha.2011.03.001

 

  1. Anvari R, Siahsar M, Gholtashi S, Kahoo A. Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation. IEEE Trans Geosci Remote Sens. 2017;55(11):6574-6581. doi: 10.1109/TGRS.2017.2730228

 

  1. Anvari R, Mohammadi M, Kahoo AR, Khan NA, Abdullah AI. Random noise attenuation of 2-D seismic data based on sparse low-rank estimation of the seismic signal. Comput Geosci. 2020;135:104376-104387. doi: 10.1016/j.cageo.2019.104376

 

  1. Binder G, Titov A, Liu Y, et al. Modeling the seismic response of individual hydraulic fracturing stages observed in a time-lapse distributed acoustic sensing vertical seismic profiling survey. Geophysics. 2020;85(4):T225-T235. doi: 10.1190/GEO2019-0819.1

 

  1. Wang Y, Liu X, Gao F, Rao Y. Robust vector median filtering with a structure-adaptive implementation. Geophysics. 2020;85(5):V407-V414. doi: 10.1190/GEO2020-0012.1

 

  1. Mendel JM. White-noise estimators for seismic data processing in oil exploration. IEEE Trans Automat Control. 2003;AC-22(5):694-706. doi: 10.1109/TAC.1977.1101597

 

  1. Han JJ, van der Baan M. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics. 2015;80(6):69-80. doi: 10.1190/GEO2014-0423.1

 

  1. Liu N, Li F, Wang D, Gao J, Xu Z. Ground-roll separation and attenuation using curvelet-based multichannel variational mode decomposition. IEEE Trans Geosci Remote Sens. 2022;60: 5901214. doi: 10.1109/TGRS.2021.3054749

 

  1. Yu S, Ma J. Complex variational mode decomposition for slope-preserving denoising. IEEE Trans Geosci Remote Sens. 2017;56(1):586-597. doi: 10.1109/TGRS.2017.2751642

 

  1. Bekara M, van der Baan M. Local singular value decomposition for signal enhancement of seismic data. Geophysics. 2007;72(2):V59-V65.

 

  1. Liu P, Li R, Yue YH, Liao SJ, Qian F. Robust prestack seismic facies analysis using shearlet transform-based deep learning. J Geophys Eng. 2022;19(3):521-533. doi: 10.1093/jge/gxac015

 

  1. Liu C, Wang D, Sun J, Wang T. Crossline-direction reconstruction of multi-component seismic data with shearlet sparsity constraint. J Geophys Eng. 2018;15(5): 1929-1942. doi: 10.1088/1742-2140/aac097

 

  1. Liu Y, Fomel S, Liu C. Signal and noise separation in prestack seismic data using velocity-dependent seislet transform. Geophysics. 2015;80(6):WD117-WD128. doi: 10.1190/GEO2014-0234.1

 

  1. Neelamani R, Baumstein AI, Gillard DG, Hadidi MT, Soroka WL. Coherent and random noise attenuation using the curvelet transform. Lead Edge. 2008;27(2):240-248.

 

  1. Li Y, Wang H, Dong X. The denoising of desert seismic data based on cycle-GAN with unpaired data training. IEEE Geosci Remote Sens Lett. 2021;18(11):2016-2020. doi: 10.1109/LGRS.2020.3011130

 

  1. Dong X, Lin J, Lu S, Wang H, Li Y. Multiscale spatial attention network for seismic data denoising. IEEE Trans Geosci Remote Sens. 2022;60:21779964. doi: 10.1109/TGRS.2022.3178212

 

  1. Dong X, Lin J, Lu S, Huang X, Wang H, Li Y. Seismic shot gather denoising by using a supervised deep learning method with weak dependence on real noise data: A solution to the lack of real noise data. Surv Geophys. 2022;43(5):1363-1394. doi: 10.1007/s10712-022-09702-7

 

  1. Zhong T, Li F, Zhang R, Dong X, Lu S. Multi-scale residual pyramid network for seismic background noise attenuation. IEEE Trans Geosci Remote Sens. 2022;60:5922014. doi: 10.1109/TGRS.2022.3217887

 

  1. Lin Y, Theiler J, Wohlberg B. Physics-guided data-driven seismic inversion: Recent progress and future opportunities in full-waveform inversion. IEEE Signal Process Mag. 2023;40(1):115-133. doi: 10.1109/MSP.2022.3217658

 

  1. Chen G, Yang W, Wang H, Zhou H, Huang X. Elastic full waveform inversion based on full-band seismic data reconstructed by dual deconvolution. IEEE Geosci Remote Sens Lett. 2022;19:1-5. doi: 10.1109/LGRS.2022.3178915

 

  1. Li J, Ye M, Stankovic L, Stankovic V, Pytharouli S. Domain knowledge informed multitask learning for landslide-induced seismic classification. IEEE Geosci Remote Sens Lett. 2023;20:1-5. doi: 10.1109/LGRS.2023.3279068

 

  1. Noh K, Kim D, Byun J. Explainable deep learning for supervised seismic facies classification using intrinsic method. IEEE Trans Geosci Remote Sens. 2023;61:1-11. doi: 10.1109/TGRS.2023.3236500

 

  1. Li X, Wu B, Zhu X, Yang H. Consecutively missing seismic data interpolation based on coordinate attention Unet. IEEE Geosci Remote Sens Lett. 2022;19:1-5. doi: 10.1109/LGRS.2021.3128511

 

  1. Lu S. Migration using sea surface-related multiples: Challenges and opportunities. Geophysics. 2021;86(5):WC11-WC19. doi: 10.1190/GEO2020-0862.1

 

  1. Lu S, Wu H, Dong X, et al. Building adjoint operators for least-squares migration using the acoustic wave equation. Geophysics. 2023;88(2):S71-S85. doi: 10.1190/GEO2022-0279.1

 

  1. Wang H, Lin J, Dong X, Li Y, Yang B. Seismic velocity inversion transformer. Geophysics. 2023;88(4):R513-R533. doi: 10.1190/GEO2022-0283.1

 

  1. Dong X, Cheng M, Wang H, Li G, Lin J, Lu S. A potential solution to insufficient target-domain noise data: Transfer learning and noise modeling. IEEE Trans Geosci Remote Sens. 2023;61:5915115. doi: 10.1109/TGRS.2023.3300697

 

  1. Liu N, Wang J, Gao J, Chang S, Lou Y. Similarity-informed self-learning and its application on seismic image denoising. IEEE Trans Geosci Remote Sens. 2022;60:1-13. doi: 10.1109/TGRS.2022.3210217

 

  1. Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206

 

  1. Olaf R, Philipp F, Thomas B. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: International Conference on Medical Image Computing and Computer- Assisted Intervention. Cham: Springer International Publishing; 2015. p234-241.
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing