AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025310050
REVIEW

Advances in theoretical and technical approaches for seismic prediction of reservoir permeability

Lele Wei1 Lideng Gan1* Hao Yang1 Xinyu Li1 Gang Hao1 Xiaoyu Jiang1
Show Less
1 Research Institute of Petroleum Exploration and Development, PetroChina Company Limited, Beijing, China
Submitted: 1 August 2025 | Revised: 7 September 2025 | Accepted: 12 September 2025 | Published: 27 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Reservoir permeability serves as a critical parameter for unconventional reservoir characterization and hydrocarbon recovery optimization. However, complex petrophysical mechanisms and multifactorial coupling make its seismic prediction face significant challenges. This review comprehensively synthesized advances and limitations across three dominant methodologies: (i) dispersion/attenuation-based methods, limited by petrophysical assumptions, scaling issues, and non-uniqueness; (ii) pore structure-constrained methods, enhancing prediction accuracy but hindered by oversimplification and high-dimensional inversion instability; and (iii) artificial intelligence frameworks, offering data efficiency yet challenged by error propagation, overfitting vulnerability, and geologically implausible extrapolation. Comparative analysis revealed core bottlenecks in inadequate multiscale coupling between petrophysical mechanisms and data-driven approaches. These challenges are compounded by the absence of cross-disciplinary validation frameworks. To address these challenges, this review integrated interdisciplinary perspectives from seismic exploration, petrophysics, and machine learning. It proposed a tripartite permeability prediction paradigm unifying physical mechanisms, data-driven techniques, and engineering validation. This framework encompasses: first, advancing multi-porosity fluid-solid coupling theory and pore structure-constrained rock physics models; second, constructing physics-guided multimodal learning architectures that deeply embed differentiable physical laws (e.g., Darcy-Biot theory) within cross-scale physics-informed neural networks, coupling microscopic pore network simulations with macroscopic seismic responses; third, establishing a closed-loop workflow covering digital rock core simulations, blind well testing validation, production history matching, and dynamic data-driven evolution, thereby forming a quantifiable and iteratively upgradable technological system. This paradigm provides a multiscale approach for accurately characterizing permeability in unconventional reservoirs, and it establishes foundational theoretical principles and delineates practical implementation pathways for economically viable unconventional resource development.

Keywords
Geophysical exploration
Reservoir permeability
Dispersion and attenuation
Pore structure
Artificial intelligence
Funding
This research was financially supported by the Research Project on Coalbed Methane Supporting Technologies for Gas Reservoir Evaluation (Grant No. 2025D4QP10) from PetroChina Changqing Oilfield Company, the China National Petroleum Corporation (CNPC) Tackling and Application Science & Technology Project (Grant No. 2023ZZ25-001), the PetroChina Science and Technology Project (Grant No. 2022KT1504), and the CNPC Forward-looking Fundamental Project (Grant No. 2021DJ3505).
Conflict of interest
We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.
References
[1]
  1. Webber KJ, Van Geuns LC. Framework for constructing clastic reservoir simulation models. J Petrol Technol. 1990;42(10):1248-1297. doi: 10.2118/19582-PA

 

  1. Sahimi M. Flow and Transport in Porous Media and Fractured Rock. 2nd ed. United States: Wiley; 2011. doi: 10.1002/9783527636693.index

 

  1. Suo Y, Guan W, Dong M, et al. Study on the heat extraction patterns of fractured hot dry rock reservoirs. Appl Therm Eng. 2025;262:125286. doi: 10.1016/j.applthermaleng.2024.125286

 

  1. Razavirad F, Schmutz M, Binley A. Estimation of the permeability of hydrocarbon reservoir samples using induced polarization and nuclear magnetic resonance methods. Geophysics. 2018;84(2):1-76. doi: 10.1190/geo2017-0745.1

 

  1. Yuan SY, Song CH, Tang GY, et al. inventors; China University of Petroleum (Beijing), assignee. Yi Zhong Chu Ceng Shen Tou Lü Yu Ce Fang Fa, Zhuang Zhi Ji Cun Chu Jie Zhi [Reservoir Permeability Prediction Method, Device, and Storage Medium]. CN patent CN111399044B. 2021.

 

  1. Pride SR, Harris JM, Johnson DL, Mateeva A, Michael F. Erratum: Acquisition/processing--permeability dependence of seismic amplitudes. Leading Edge. 2003;22(7):698-698. doi: 10.1190/1.1603031

 

  1. Nie JX, Yang DH, Yang HZ. Ji Yu Fei Bao He Duo Kong Jie Zhi BISQ Mo Xing De Chu Ceng Can Shu Fan Yan [Inversion of reservoir parameters based on the BISQ model in partially saturated porous media]. Chin J Geophys. 2004;47(6): 1101-1105. doi: 10.3321/j.issn:0001-5733.2004.06.024

 

  1. Zhang XW, Wang DL, Wang ZJ, et al. Ji Yu BISQ Ji Zhi San Wei Shuang Xiang Zheng Jiao Lie Xi Ge Xiang Yi Xing Jie Zhi Shuai Jian Ji Pin San Fang Wei Te Xing Yan Jiu [The study on azimuth characteristics of attenuation and dispersion in 3D two-phase orthotropic crack medium based on BISQ mechanism]. Chin J Geophys. 2010;53(10):2452-2459. doi: 10.3969/J.Issn.0001-5733.2010.10.019

 

  1. Fang Z, Yang D. Inversion of reservoir porosity, saturation, and permeability based on a robust hybrid genetic algorithm. Geophysics. 2015;80(5):R265-R280. doi: 10.1190/Geo2014-0502.1

 

  1. Wu T, Li HX, Tao CH, Gu CH. Ji Yu Gai Jin Yi Chuan Suan Fa De BISQ Mo Xing Duo Can Shu Fan Yan Fang Fa Yan Jiu [The methodological study of multi-inversion of BISQ mold parameters based on modified genetic algorithm]. Prog Geophys. 2012;5:2128-2137. doi: 10.6038/J.Issn.1004-2903.2012.05.038

 

  1. Yang L, Yang DH, Hao YJ, Nie JX. Duo Zhong Wu Li Ji Zhi Ou He Zuo Yong Xia De Chu Ceng Jie Zhi Can Shu Fan Yan Yan Jiu [A study on inversion of reservoir parameters under coupling interaction of multiple physical mechanisms]. Chin J Geophys. 2014;57(8):2678-2686. doi: 10.6038/cjg20140826

 

  1. White JE. Computed seismic speeds and attenuation in rocks with partial saturation. Geophysics. 1975;40(2): 224-232. doi: 10.1190/1.1440520

 

  1. White JE, Mihailova N, Lyakhovitsky FM. Low-frequency seismic waves in fluid-saturated layered rocks. J Acoust Soc Am. 1975;57(S1):S30. doi: 10.1121/1.1995164

 

  1. Johnson DL. Theory of frequency dependent acoustics in patchy-saturated porous media. J Acoust Soc Am. 2001;110(2):682-694. doi: 10.1121/1.1381021

 

  1. Sun WT. On the theory of Biot-patchy-squirt mechanism for wave propagation in partially saturated double-porosity medium. Phys Fluids. 2021;33(7):076603. doi: 10.1063/5.0057354

 

  1. Xiong FS, Sun WT, Ba J, Carcione JM. Effects of fluid rheology and pore connectivity on rock permeability based on a network model. J Geophys Res Solid Earth. 2020;125(3):e2019JB018857. doi: 10.1029/2019JB018857

 

  1. Wei LL, Gan LD, Xiong FS, Sun WT, Ding Q, Yang H. Ji Yu San Wei Kong Xi Wang Luo Mo Xing De Zong Bo Pin San Shuai Jian Te Zheng Fen Xi [Attenuation and dispersion characteristics of p-waves based on the three-dimensional pore network model]. Chin J Geophys. 2021;64(12): 4618-4628. doi: 10.6038/Cjg2021p0496

 

  1. Tan XH, Zhou XJ, Xu P, Zhu Y, Zhuang DJ. A fractal geometry-based model for stress-sensitive permeability in porous media with fluid-solid coupling. Powder Technol. 2025;455:120774. doi: 10.1016/j.powtec.2025.120774

 

  1. Liu LH, inventor; Chengdu Crystal Petroleum Technology Co., Ltd., assignee. Yi Zhong Li Yong Die Qian Di Zhen Pin San Fen Xi Yu Ce Chu Ceng Shen Tou Lü De Fang Fa [A method for Predicting Reservoir Permeability Using Pre-Stack Seismic Dispersion Analysis]. CN patent CN103364834B. 2016.

 

  1. Wu ZW, Guo S, Chen H, inventors; CNPC Chuanging Drilling Engineering Company Limited, assignee. Ji Yu Di Zhen Pou Mian Pin Zhi Yin Zi Ji Suan Chu Ceng Shen Tou Lü De Fang Fa [A method for Calculating Reservoir Permeability Based on Seismic Profile Quality Factor]. CN patent CN107589458B. 2019.

 

  1. Müller TM, Gurevich B, Lebedev M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review. Geophysics. 2010;75(5):75A147-75A164. doi: 10.1190/1.3463417

 

  1. Chen HZ. Estimating elastic properties and attenuation factor from different frequency components of observed seismic data. Geophys J Int. 2019;220(2):794-805. doi: 10.1093/gji/ggz476

 

  1. Silin DB, Korneev VA, Goloshubin GM, Patzek TW. A hydrologic view on Biot’s theory of poroelasticity. Office of Scientific and Technical Information Technical Reports; 2004. doi: 10.2172/822181

 

  1. Goloshubin G, Silin D, Vingalov V, Takkand G, Latfullin M. Reservoir permeability from seismic attribute analysis. Leading Edge. 2008;27(3):376-381. doi: 10.1190/1.2896629

 

  1. Goloshubin G, Van SC, Korneev V, Silin D, Vingalov V. Reservoir imaging using low frequencies of seismic reflections. Leading Edge. 2006;25(5):527-531. doi: 10.1190/1.2202652

 

  1. Chen XH, He ZH, Zhu SX, Wei L, Zhong WL. Seismic low-frequency-based calculation of reservoir fluid mobility and its applications. Appl Geophys. 2012;9(3):326-332. doi: 10.1007/s11770-012-0340-6

 

  1. Zhao LX, Yuan HM, Yang JK, et al. Mobility effect on poroelastic seismic signatures in partially saturated rocks with applications in time‐lapse monitoring of a heavy oil reservoir. J Geophys Res Solid Earth. 2017;11:8872-8891. doi: 10.1002/2017jb014303

 

  1. Lu L. Frequency-Dependent Seismic Inversion Method for Fluid Mobility Prediction in Hydrocarbon Reservoirs. China: China University of Petroleum (East China); 2019. doi: 10.27644/d.cnki.gsydu.2019.000781

 

  1. Zhang YJ, Wen XT, Jiang L, Liu J, Yang JX, Liu SM. Prediction of high-quality reservoirs using the reservoir fluid mobility attribute computed from seismic data. J Petrol Sci Eng. 2020;190:107007. doi: 10.1016/j.petrol.2020.107007

 

  1. Chen ZD, Guo AH. Di zhen shu ju yu ce shen tou lv wen ti de tao lun [Discussion on permeability prediction with seismic data]. Oil Geophys Prospect. 1998;S2:86-90.

 

  1. Sun YF. Core-log-seismic integration in hemipelagic marine sediments on the eastern flank of the Juan de Fuca Ridge. Proc Ocean Drilling Program Sci Results. 2000;168:21-35. doi: 10.2973/odp.proc.sr.168.009.2000

 

  1. Sun YF. Pore structure effects on elastic wave propagation in rocks: AVO modelling. J Geophys Eng. 2004;1(4):268-276. doi: 10.1088/1742-2132/1/4/005

 

  1. Dou QF, Sun YF, Sullivan C. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas. J Appl Geophys. 2011;74(1):8-18. doi: 10.1016/j.jappgeo.2011.02.010

 

  1. Zhang HR, Sun YF, Dou QF, Zhang TT. Kong xi jie gou can shu zai pu guang qi tian de chu bu ying yong [Preliminary application of the frame flexibility factor in Puguang gas field]. Oil Gas Geol. 2012;33(6):877-882. doi: 10.11743/ogg20120608

 

  1. Jin XJ, Hou JG, Liu HL, Zhang JX, Liu H. Pu Guang Qi Tian Jiao Tan Xiang Fu Za Kong Xi Lei Xing Chu Ji Ceng Shen Tou Lv Di Zhen Yu Ce Fang Fa [Seismic prediction method of permeability of reef bank reservoir with complex pore types in Puguang Gasfield]. J Palaeogeogr. 2016;18(2):275-284. doi: 10.7605/gdlxb.2016.02.021

 

  1. Zhao RK. Fine Reservoir Prediction Under Facies-Constrained Framework. Chengdu: Chengdu University of Technology; 2014.

 

  1. Gan LD, Wang YJ, Luo XZ, et al. Ji Yu Kong Xi Jie Gou Can Shu De Xiang Kong Shen Tou Lv Di Zhen Yu Ce Fang Fa [A permeability prediction method based on pore structure and lithofacies]. Petrol Explor Dev. 2019;46(5):935-942. doi: 10.1016/S1876-3804(19)60250-8

 

  1. Wei XC, Innanen K. Prediction of reservoir parameters with seismic data. CREWES Meeting Poster; 2019; 31, no. 33. Available from: https://www.crewes.org/Documents/ Posters/posters.php?year=2019 [Last accessed on 15 Oct 2025].

 

  1. Ding Q, Gan LD, Wei LL, et al. Permeability prediction based on dual seismic pore structure factors. Geophysics. 2023,88(3):M173-M184. doi: 10.1190/geo2022-0411.1

 

  1. Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science. Nature. 2019;566(7743):195-204. doi: 10.1038/s41586-019-0912-1

 

  1. Xu CC, Misra S, Srinivasan P, et al. When Petrophysics Meets Big Data: What can Machine Do? In: SPE Middle East Oil and Gas Show and Conference; 2019. doi: 10.2118/195068-MS

 

  1. Xu LL, Du ZY, Cai MF, et al. Sparse data-driven knowledge discovery for interpretable prediction of permeability in tight sandstones. Eng Geol. 2025;353:108151. doi: 10.1016/j.enggeo.2025.108151

 

  1. He Y, Peng W, Yin J. Li Yong Di Zhen Shu Xing Yu Ce Shen Tou Lv [Permeability Prediction by Seismic Attribute Data]. Acta Petrol Sin. 2001;6:34-36. doi: 10.3321/j.issn:0253-2697.2001.06.007

 

  1. Anifowose F, Abdulraheem A, Al-Shuhail A. A parametric study of machine learning techniques in petroleum reservoir permeability prediction by integrating seismic attributes and wireline data. J Petrol Sci Eng. 2019;176:762-774. doi: 10.1016/j.petrol.2019.01.110

 

  1. Zhen Y, Zhang A, Zhao XM, Ge JW, Zhao Z, Yang CC. Prediction of deep low permeability sandstone seismic reservoir based on CBAM-CNN. Geoenergy Sci Eng. 2024;242:213241. doi: 10.1016/j.geoen.2024.213241

 

  1. Riyadi ZA, Olutoki JO, Hermana M, Latif AHA, Yogi IBS, Kadir SJA. Machine learning prediction of permeability distribution in the X field Malay Basin using elastic properties. Results Eng. 2024;24:103421. doi: 10.1016/j.rineng.2024.103421

 

  1. Bergen KJ, Johnson PA, De HMV, Beroza GC. Machine learning for data-driven discovery in solid Earth geoscience. Science. 2019;363(6433):eaau0323. doi: 10.1126/science.aau0323

 

  1. Jia YN, Ma JW. What can machine learning do for seismic data processing? An interpolation application. Geophysics. 2017;82(3):V163-V177. doi: 10.1190/geo2016-0300.1

 

  1. Yu SW, Ma JW. Deep learning for geophysics: Current and future trends. Rev Geophys. 2021;59(3):e2021RG000742. doi: 10.1029/2021RG000742

 

  1. Xiao LZ. Ji Qi Xue Xi Shu Ju Qu Dong Yu Ji Li Mo Xing Rong He Ji Ke Jie Shi Xing Wen Ti [The fusion of data-driven machine learning with mechanism models and interpretability issues]. Geophys Prospect Petrol. 2022;2:205- 212. doi: 10.3969/j.issn.1000-1441.2022.02.002

 

  1. Carmen PC. Fluid flow through granular beds. Chem Eng Res Des. 1997;75:S32-S48. doi: 10.1016/s0263-8762(97)80003-2

 

  1. Bourbie T, Coussy O, Zinszner B, Junger MC. Acoustics of porous media. J Acoust Soc Am. 1992;91(5):3080-3080. doi: 10.1121/1.402899

 

  1. Shi L, Wang P, Liu JZ, Li JY, Wen LF, Chen XH. Zhi Mi Sha Yan Chu Ceng Wu Xing Can Shu Yu Ce Fang Fa Yan Jiu [Physical properties prediction for tight sandstone reservoirs]. Geophys Prospect Petrol. 2020;59(1):98-107.

 

  1. Wei LL, Gan LD, Yang H, et al. Chu Ceng Shen Tou Xing Duo Ren Wu Zhi Neng Di Zhen Yu Ce Fang Fa [Multi-task learning-based intelligent seismic prediction of reservoir permeability]. Geophys Prospect Petrol. 2025;64(4):727-735. doi: 10.12431/Issn.1000-1441.2024.0285
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing