AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025340060
ARTICLE

Quantifying the effects of micro-cracks on velocity anisotropy in lacustrine shales with variable sedimentary structures

Wenhui Tan1,2 Weihua Liu1,2 Yang Wang1,2* Hui Shen1,2
Show Less
1 SINOPEC Geophysical Research Institute Co., Ltd., Nanjing, Jiangsu, China
2 SINOPEC Key Laboratory of Geophysics, Nanjing, Jiangsu, China
Submitted: 18 August 2025 | Revised: 12 September 2025 | Accepted: 17 September 2025 | Published: 23 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Understanding the relationship between micro-cracks and elastic anisotropy is crucial for characterizing subsurface flow pathways, optimizing hydraulic fracturing, and enhancing seismic interpretation in unconventional shale reservoirs. Although clay content and total organic carbon (TOC) are recognized primary controls on anisotropy, the specific influence of sedimentary structures on micro-crack parameters (such as crack porosity, crack density, and aspect ratio) and their contribution to anisotropic behavior have not been fully quantified, particularly in lacustrine shales with varied sedimentary architectures. In this study, 17 shale samples were categorized into three sedimentary structural types: laminated, bedded, and massive, based on their microstructure characteristics. Ultrasonic velocity measurements were performed on 17 paired shale plugs under confining pressures to quantify the relationship between micro-crack parameters and elastic anisotropy. Experimental results reveal a clear difference in stress sensitivity of bedding-normal velocities: Laminated shales > bedded shales > massive shales, which are attributed to varying degrees of micro-crack alignment and density. Laminated shales exhibit the strongest anisotropic properties, followed by bedded shales, while massive shales show weak anisotropy. Velocity predictions from the Mori-Tanaka effective medium model are in good agreement with the measurements, validating its applicability for shales with diverse structures. Micro-crack analysis indicates a positive correlation between crack density/porosity and anisotropy magnitude. Notably, laminated shales are characterized by the highest crack porosity (0.012–0.015%), high clay content (average 40%), and moderate TOC, indicating a combined effect of composition and microstructure on anisotropy. This study highlights that sedimentary structure plays a key role in controlling micro-crack development and related anisotropy in lacustrine shales, with laminated shales exhibiting the most significant combined effect, thus improving the accuracy of minimum-horizontal-stress prediction and hydraulic-fracture design.

Keywords
Lacustrine shale
Micro-cracks
Thomsen anisotropic parameters
Ultrasonic experiment
Mori-Tanaka model
Funding
This research was supported by the National Natural Science Foundation of China (grant number: 42430810).
Conflict of interest
The authors declare that they have no conflicts of interest.
References
  1. Zou CN, Yang Z, Zhu RK, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies. Acta Geol Sin. 2015;89(6):979-1007. doi: 10.1111/1755-6724.12491

 

  1. Jin ZJ, Wang GP, Liu GX, et al. Research progress and key scientific issues of continental shale oil in China. Acta Petrol Sin. 2021;42(7):821-835. doi: 10.7623/syxb202107001

 

  1. Li MW, Ma XX, Jin ZJ, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil Gas Geol. 2022;43(1):1-25. doi: 10.11743/ogg20220101

 

  1. Vernik L, Nur A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics. 1992;57:727-735. doi: 10.1190/1.1443286

 

  1. Vernik L, Landis C. Elastic anisotropy of source rocks: Implications for hydrocarbon generation and primary migration. AAPG Bull. 80(4):531-544.

 

  1. Wright J. The effects of transverse isotropy on reflection amplitudes versus offset. Geophysics. 1987;52:564-567. doi: 10.1190/1.1442325

 

  1. Sayers CM. Seismic anisotropy of shales. Geophys Prospect. 2005;53:667-676. doi: 10.4236/ijg.2016.73027

 

  1. Vernik L. Chapter 3: Seismic Rock properties and rock physics. In: Vernik L, editor. Seismic petrophysics in Quantitative Interpretation. Houston: Society of Exploration Geophysicists; 2016. p. 43-86. doi: 10.1190/1.9781560803256.ch3

 

  1. Zoback MD, Kohli AH. Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity. Cambridge: Cambridge University Press; 2019.

 

  1. Yin XY, Zong ZY, Wu GC. Research on seismic fluid identification driven by rock physics. Sci Chin Earth Sci. 2015;58:159-171. doi: 10.1007/s11430-014-4992-3

 

  1. Chen HZ, Yin XY, Gao JH, Liu BY, Zhang GZ. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Sci China Earth Sci. 2015;58:805-814. doi: 10.1007/s11430-014-5022-1

 

  1. Liu Z, Zhang F, Li X. Elastic anisotropy and its influencing factors in organic-rich marine shale of southern China. Sci China Earth Sci. 2019;62:1805-1818. doi: 10.1007/s11430-019-9449-7

 

  1. Vernik L, Liu X. Velocity anisotropy in shales: A petrophysical study. Geophysics. 1997;62(2):521-532. doi: 10.1190/1.1444162

 

  1. Sone H, Zoback MD. Mechanical properties of shale-gas reservoir rocks-Part 1: Static and dynamic elastic properties and anisotropy. Geophysics. 2013;78:D381-D392. doi: 10.1190/geo2013-0050.1

 

  1. Hornby BE, Schwartz LM, Hudson JA. Anisotropic effectivemedium modeling of the elastic properties of shales. Geophysics. 1994;59:1570-1583. doi: 10.1190/1.1443546

 

  1. Sayers CM. The elastic anisotrophy of shales. J Geophys Res. 1994;99:767-774. doi: 10.1029/93JB02579

 

  1. Lonardelli I, Wenk HR, Re Y. Preferred orientation and elastic anisotropy in shales. Geophysics. 2007;72:D33-D40. doi: 10.1190/1.2435966

 

  1. Wenk HR, Lonardelli I, Franz H, Nihei K, Nakagawa S. Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics. 2006;72:E69-E75. doi: 10.1190/1.2432263

 

  1. Bandyopadhyay K. Seismic Anisotropy-Geological Causes and its Implications to Reservoir Geophysics. Dissertation for Doctoral Degree. Palo Alto: Stanford University; 2009.

 

  1. Qian K, Zhang F, Chen S, Li X, Zhang H. A rock physics model for analysis of anisotropic parameters in a shale reservoir in Southwest China. J Geophys Eng. 2016;13:19-34. doi: 10.1088/1742-2132/13/1/19

 

  1. Zhang F, Li X, Qian K. Estimation of anisotropy parameters for shale based on an improved rock physics model, part 1: Theory. J Geophys Eng. 2017;14:143-158. doi: 10.1088/1742-2140/14/1/143

 

  1. Zhang F. Estimation of anisotropy parameters for shales based on an improved rock physics model, part 2: Case study. J Geophys Eng. 2017;14:238-254. doi: 10.1088/1742-2140/aa5afa

 

  1. Zhang F. A modified rock physics model of overmature organicrich shale: Application to anisotropy parameter prediction from well logs. J Geophys Eng. 2019;16:92-104. doi: 10.1093/jge/gxy008

 

  1. Tan KJ, Deng JX, Liu ZH, Sun X. Rock physical properties and variation patterns of Chang 7 lacustrine shale oil reservoir in the Triassic Yangchang Formation, Ordos Basin. Chinese J Geophys. 2025;68(2):652-667. doi: 10.6038/cjg2023Q0862

 

  1. Liu WH, Wang Y, Shen H, Li M, Fan WH. Ultrasonic velocity anisotropy of Jurassic shales with different lithofacies. J Geophys Eng. 2024;21(4):1103-1118. doi: 10.1093/jge/gxae061

 

  1. Vernik L. Microcrack-induced versus intrinsic elastic anisotropy in mature HC-source shales. Geophysics. 1993;58(11):1703-1706. doi: 10.1190/1.1443385

 

  1. Ciz R, Shapiro SA. Stress-dependent anisotropy in transversely isotropic rocks: Comparison between theory and laboratory experiment on shale. Geophysics. 2009;74(1):D7-D12. doi: 10.1190/1.3008546

 

  1. Sarout J, Molez L, Gueguen Y, Hoteit N. Shale dynamic properties and anisotropy under triaxial loading: Experimental and theoretical investigations. Phys Chem Earth Parts A/B/C. 2007;32(8):896-906. doi: 10.1016/J.PCE.2006.01.007

 

  1. Sayers C, Munster J, King MS. Stress-induced ultrasonic anisotrophy in Berea sandstone. Int J Rock Mech Mining Sci Geomech Abstr. 1990,27:429-436. doi: 10.1016/0148-9062(90)92715-Q

 

  1. Kohli AH, Zoback MD. Frictional properties of shale reservoir rocks. J Geophys Res Solid Earth. 2013;118(9):5109-5125. doi: 10.1002/jgrb.50346

 

  1. Yan BH, Zhao JG, Xiao ZJ, et al. Analysis of elastic properties and anisotropic rock physics modeling of Qianjiang Formation shale. Chinese J Geophys. 2024;67(7):2802-2819. doi: 10.6038/cjg2022Q0724

 

  1. Zhang JC, Lin LM, Li YX, Tang X, Zhu LL, Xin YW. Classification and evaluation of shale oil. Earth Sci Front. 2012;19(5):322-331.

 

  1. Liu B, Lyu Y, Ran Q, et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin. Oil Gas Geol. 2014;35(2):280-285. doi: 10.11743/ogg20140216

 

  1. Liu B, Shi JX, Fu XF, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petrol Explor Dev. 2018;45(5):828-838. doi: 10.1016/S1876-3804(18)30091-0

 

  1. Lazar OR, Bohacs KM, Macquaker JH, Schieber J, Demko T. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines. J Sediment Res. 2015;85(3):230-246. doi: 10.2110/jsr.2015.11

 

  1. Vernik L. Hydrocarbon generation-induced microcracking of source rocks. Geophysics. 1994;59(4):555-563. doi: 10.1190/1.1443616

 

  1. Sun LD, Wang XJ, Feng ZH, et al. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin. Oil Gas Geol. 2023;44(6):1350-1365. doi: 10. 11743/ogg20230602

 

  1. He WY, Zhao Y, Zhong JH, Sun NL. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag, Songliao Basin. Lithol Reserv. 2024;36(3):1-18.

 

  1. Wang Z. Seismic anisotropy in sedimentary rocks, part 1: A single plug laboratory method. Geophysics. 2002;67(5):1415-1422. doi: 10.1190/1.1512787

 

  1. Thomsen L. Weak elastic anisotropy. Geophysics. 1986;51(10):1954-1966. doi: 10.1190/1.1442051

 

  1. David EC, Zimmerman RW. Pore structure model for elastic wave velocities in fluid-saturated sandstones. J Geophys Res. 2012;117(B7): B07210. doi: 10.1029/2012JB009195

 

  1. Lo TW, Coyner KB, Toksöz MN. Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite. Geophysics. 1986;51(1):164-171. doi: 10.1190/1.1442029

 

  1. Johnston JE, Christensen NI. Seismic anisotropy of shales. J Geophys Res. 1995;100:5991-6003.

 

  1. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1974;21(5):571-574.doi: 10.1016/0001-6160(73)90064-3

 

  1. Zhang L, Ba J, Fu LY, Carcione José M, Cao CH. Estimation of pore microstructure by using the static and dynamic moduli. Int J Rock Mech Min Sci. 2019;113:24-30. doi: 10.1016/j.ijrmms.2018.11.005

 

  1. Shapiro SA. Elastic piezosensitivity of porous and fractured rocks. Geophysics. 2003;68(2):482-486. doi: 10.1190/1.1567215

 

  1. Kaarsberg EA. Introductory studies of natural and artificial argillaceous aggregates by sound-propagation and x-ray diffraction methods. J Geol. 1959;67(4):447-472. doi: 10.1086/626597

 

  1. Wenk HR, Voltolini M, Mazurek M, Loon LRV, Vinsot A. Preferred orientations and anisotropy in shales: Callovo-oxfordian shale (France) and Opalinus clay (Switzerland). Clays Clay Miner. 2008;56(3):285-306. doi: 10.1346/CCMN.2008.0560301

 

  1. Curtis JB. Fractured shale-gas systems. AAPG Bull. 2002;86:1921-1938.

 

  1. Backus GE. Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res. 1962;67(11):4427-4440. doi: 10.JZ067i011p04427

 

  1. Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. 2nd ed. Cambridge: Cambridge University Press; 2009. doi: 10.1017/CBO9780511626753
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing