ARTICLE

EEI attributes for fluid discrimination using fuzzy labeled multiclass support vector machine

MARZIEH MIRZAKHANIAN HOSEIN HASHEMI*
Show Less
Institute of Geophysics, University of Tehran, Tehran, Iran.,
JSE 2022, 31(4), 375–390;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Mirzakhanian, M. and Hashemi, H., 2022. EEI attributes for fluid discrimination using fuzzy labeled multiclass support vector machine. Journal of Seismic Exploration, 31: 375-390. In exploration seismology, automatic seismic facies analysis to discriminate different facies and fluid content is an essential task to reduce future drilling risks. There are different seismic attributes as learning features and various learning methods for automatic seismic facies analysis. Previous studies have proved that selecting efficient seismic attributes is more crucial than the learning method. Therefore, it is logical to pay more attention to the choice of proper attributes. The extended elastic impedance (EED attributes belong to prestack seismic attributes, and they are functions of compressional velocity, shear velocity, density, and chi angles. The Chi angle is the virtual incident angle and changes between -90 to +90 degrees. The innovative method demonstrates the role of fluid replacement modeling (FRM) for the supervised selection of EEI attributes at suitable chi angles as input features to train an intelligent model for the discrimination of reservoir fluid contents. The method starts with FRM to model different fluid contents of the reservoir (100% brine, 100% oil, and 100% gas) using borehole data. Then, efficient EEI (Chi) logs are selected according to the results of the EEI template analysis. Thus, EEI seismic attributes at selected Chi angle are calculated from prestack seismic data by amplitude versus offset (AVO) analysis and EEI inversion. Then, labeling of the EEI attributes is performed by fuzzy c-mean clustering (FCM). By considering membership functions, a fuzzy concept is an appropriate tool for soft clustering and an appealing method for seismic interpretation. Afterward, a classifier model of the multiclass support vector machine (SVM) is trained using the fuzzy labeled samples to predict the fluid type of unseen data. 0963-065 1/22/$5.00 © 2022 Geophysical Press Ltd. 376 The method was applied to a 3D prestack seismic data of an oil sand reservoir in the Persian Gulf to predict the fluid distribution map at the top of the reservoir. The reservoir contains a considerable amount of gas cap. Only one borehole data drilled in the oil column is available for FRM and fluid EEI template analysis. The available fluid distribution map confirms the accuracy of the resulted fluid distribution map based on the modeling of all the wells in different locations of the reservoir. This confirmation proves the application of the proposed method in fluid pore identification.

Keywords
seismic facies analysis
fluid discrimination
extended elastic impedance
fuzzy clustering
multiclass support vector machine
fluid replacement modeling
References
  1. Aminzadeh, F. and de Groot, P., 2006, Neural networks and other soft computing
  2. techniques with applications in the oil industry. EAGE Publications, Houten: 161.
  3. Aminzadeh, F. and de Groot, P., 2004. Soft computing for qualitative and quantitative
  4. seismic object and reservoir property prediction, Part 1: Neural network
  5. applications. First Break, 22: 49-54.
  6. Aminzadeh, F. and Wilkinson, D., 2004. Soft computing for qualitative and quantitative
  7. seismic object and reservoir property prediction, Part 2: Fuzzy logic
  8. applications. First Break, 22: 69-78.
  9. Avseth, P., Mukerji, T. and Mavko, G., 2006. Quantitative Seismic Interpretation:
  10. Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge
  11. University Press, Cambridge: 359.
  12. Bagheri, M., Riahi, M.A. and Hashemi, H., 2013. Reservoir lithofacies analysis using 3D
  13. seismic data in dissimilarity space. J. Geophys. Engineer., 10(3): 9.
  14. Bames, A.E. and Laughlin, K.J., 2002. Investigation of methods for unsupervised
  15. classification of seismic data. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,
  16. Salt Lake City: 2221- 2224.
  17. Barnes, A.E., 2007. Redundant and useless seismic attributes. Geophysics, 72(3), P33-
  18. P38.
  19. Bora, D.J. and Gupta, A.K., 2014. Impact of exponent parameter value for the partition
  20. matrix on the performance of fuzzy C means algorithm. Internat. J. Sci. Res.
  21. Comput. Sci. Applic. Manag. Stud., 3(3): May 2014.
  22. doi.org/10.48550/arXiv.1406.4007.
  23. Chopra, S. and Marfurt, K.J., 2007. Seismic Attributes for Prospect Identification and
  24. Reservoir Characterization. SEG, Tulsa, OK.
  25. Connolly, P., 2017. Chi. Extended Abstr., 79th EAGE Conf., Paris, Tu A3 03.
  26. doi: 0.3997/2214-4609.201700825.
  27. Connolly, P., 1999. Elastic impedance. The Leading Edge, 18: 438-452.
  28. Gassmann, F., 1951. Elasticity of porous media. Vierteljahrsschr. Naturforsch.
  29. Gesselsch., 96: 1-23.
  30. Hadiloo, S., Mirzaei, S., Hashemi, H. and Beiranvand, B., 2018. Comparison between
  31. unsupervised and supervised fuzzy clustering method in interactive mode to
  32. obtain the best result for extract subtle patterns from seismic facies maps.
  33. Geopersia, 8: 27-34.
  34. Hashemi, H., Javaherian, A. and Babuska, R., 2008. A semi-supervised method to detect
  35. seismic random noise with fuzzy GK clustering. J. Geophys. Engineer., 5: 457-
  36. Hashemi, H., 2010. Logical considerations in applying pattern recognition techniques on
  37. seismic data, Precise ruling - realistic solutions. CSEG Recorder, 35(4): 46-49.
  38. Hashemi, H., 2012. Fuzzy clustering of seismic sequence. IEEE Sign. Progress. Mag.,
  39. 29(3): 82-87.
  40. Hashemi, H. and Beukelaar, P., 2017. Clustering seismic datasets for optimized facies
  41. analysis using a SSCSOM technique. Extended Abstr., 79th EAGE Conf., Paris.
  42. doi: 10.3997/2214-4609.201700916.
  43. Khemchandani, R., Pah, A. and Chandra, S., 2016. Fuzzy least squares twin support
  44. vector clustering. Neural Comput. Appl. doi: 10.1007/s00521-016-2468-4.
  45. Khemchandani, R. and Sharma, S., 2016. Robust least squares twin support vector
  46. machine for human activity recognition. Appl. Soft Comput., 47: 33-46.
  47. Kuster, G.T. and Toks6z, M.N., 1974a. Velocity and attenuation of seismic waves in two-
  48. phase media - Part 1: Theoretical formulations. Geophysics, 39: 587-606.
  49. doi: 10.1190/1.1440450.
  50. Kuster, G.T. and Toks6éz, M.N., 1974b. Velocity and attenuation of seismic waves in
  51. two-phase media - Part 2: Experimental results. Geophysics, 39: 607-618.
  52. doi: 10.1190/1.1440451
  53. Li, G., You, J. and Liu, X., 2015. Support vector machine (SVM) based prestack AVO
  54. inversion and its applications. J. Appl. Geophys., 120: 60-68.
  55. Mardan, A., Javaherian A.R. and Mirzakhanian, M., 2017. Channel characterization
  56. using support vector machine. Extended Abstr., 79th EAGE Conf., Paris.
  57. Mavko, G., Mukerji, T. and Dvorkin, J., 2009. The Rock Physics Handbook: Tools for
  58. Seismic Analysis of Porous Media. Cambridge University Press, Cambridge.
  59. Mirzakhanian, M., Sharifi, J., Sokooti, M.R. and Mondol, N.H., 2017. Sensitivity
  60. analysis of multi-angle extended elastic impedance (MEED to fluid content: A
  61. carbonate reservoir case study from an Iranian oil field. Abstr., 3rd Seminar
  62. Petroleum Geophysical Exploration.
  63. Mirzakhanian, M., Khoshdel, H., Asnaashar, A. and Sokooti, R. 2015. Reservoir
  64. Discrimination Using EEI Analysis. Extended Abstr., 77th EAGE Conf., Madrid.
  65. Mirzakhanian, M. and Hashemi, H., 2022a. ANFIS rules driven integrated seismic and
  66. petrophysical facies analysis. J. Earth Space Phys., 47(4): 133-141.
  67. doi: 10.22059/JESPHY S.2022.331894.1007370.
  68. Mirzakhanian, M. and Hashemi, H., 2022b. Semi-supervised fuzzy clustering for facies
  69. analysis using EEI seismic attributes. Geophysics, 87(4): N75-N84.
  70. doi: https://doi.org/10.1190/geo2021-0330.1.
  71. Na'imi, S.R., Shadizadeh, S.R., Riahi, M.A. and Mirzakhanian M., 2014. Estimation of
  72. reservoir porosity and water saturation based on seismic attributes using support
  73. vector regression approach. J. Appl. Geophys., 107: 93-101.
  74. Nishitsuji, Y. and Exley, R. 2019. Elastic impedance based facies classification using
  75. support-vector-machine and deep-learning. Geophys. Prosp., 67: 1040-1054.
  76. Reine, C., 2015, A rock-physics tutorial: Discovering a supermodel. GeoConvention
  77. 2015, CSEG/CSPG/CWLS.
  78. Samba, C., Lu, H. and Mukhtar, H.J., 2017. Reservoir properties prediction using
  79. extended elastic impedance. The case of Nianga field of West African Congo
  80. basin. J. Petrol. Explor. Product. Technol., 7: 673-686.
  81. doi: 10.1007/s13202-017-0328-0.
  82. Sharifi, J., HafeziMoghadam, N., Lashkaripour, G.R., Javaherian, A and Mirzakhanian,
  83. M., 2019. Application of extended elastic impedance in seismic geomechanics.
  84. Geophysics, 84(3): 429-446.
  85. Sharifi, J. and Mirzakhanian, M., 2019. Full-angle extended elastic impedance.
  86. Interpretation, 7(4): T869-T885.
  87. Saberi, M.R., Johansen, T.A. and Talbot, M.R., 2009. Textural and burial effects on rock
  88. physics characterization of chalks. Petrol. Geosci., 15: 355-365.
  89. doi: 10.1144/1354-079309-836.
  90. Salimi Sartakhti, J., Afrabandpey, H. and Ghadiri, N., 2018. Fuzzy least squares twin
  91. support vector machines, arXiv: 1505.05451v3 [cs.AI] 21 Nov.
  92. Shang, R.; Meng, Y., Liu, C., Jiao, L., Ghalamzan Esfahani, A.M. and Stolkin, R., 2019.
  93. Unsupervised feature selection based on kernel fisher discriminant analysis and
  94. regression learning. Machine, 108: 659-686. doi.org/10.1007/s10994-018-5765-6.
  95. Tomar, D. and Agarwal, S., 2015. Multiclass least squares twin support vector machine f
  96. or pattern classification. Internat. J. Database Theory Applicat., 8: 285-302.
  97. Wang, D., Zhang, M., Li, J., Li, Z., Li, J.Q., Song, C. and Chen, X., 2017. Intelligent
  98. constellation diagram analyzer using convolutional neural network-based deep
  99. learning. Optics Express, 25: 17150-17166. doi: 10 .1364/0E.25.017150.
  100. Whitcombe, D.N., 2002. Elastic impedance normalization. Geophysics, 67: 60-62.
  101. doi: 10.1190/1.1451331.
  102. Whitcombe, D.N., Connolly, P.A., Reagan, R.L. and Redshaw, T.C., 2002. Extended
  103. elastic impedance for fluid and lithology prediction. Geophysics, 67: 63-67.
  104. doi: 10.1190/1.1451337.
  105. Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. The
  106. Leading Edge, 28: 66-74. doi: 10 .1190/1.3064148.
  107. Wrona, T., Pan, I., Gawthorpe, R.L. and Fossen, H., 2018. Seismic facies analysis using
  108. machine learning. Geophysics, 83(5): 83-95.
  109. Xu, S. and White, R.E., 1995, A new velocity model for claysand mixtures. Geophys.
  110. Prosp., 43: 91-118. doi: 10.1111/.1365-2478.1995 .tb00126.x
  111. Yenwongfai, H.D., Mondol, N.H., Faleide, JI. and Lecomte, I., 2017. Prestack
  112. simultaneous inversion to predict lithology and pore fluid in the Realgriinnen
  113. Subgroup of the Goliat Field, southwestern Barentz Sea. Interpretation, 5(2): 75-
  114. doi: 10.1190/INT-2016-0109.1.
  115. Zhao, Z., Wang, L. and Liu, H., 2010. Efficient spectral feature selection with minimum
  116. redundancy. Proc. 24th AAAI Conf. Artificial Intelligent: 673-678.
  117. Zhao, T., 2018, Seismic facies classification using different deep convolutional neural
  118. networks. Expanded Abstr., 88th Ann. Internat. SEG Mtg., Anaheim: 2046-2050.
  119. Zoeppritz, K., 1919. Erdbebenwellen VIII B, Uber die Reflexion und Durchgang
  120. seismischer Wellen durch Unstetigkeitsflachen. Gottinger Nachr., 1: 66-84.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing