EEI attributes for fluid discrimination using fuzzy labeled multiclass support vector machine

Mirzakhanian, M. and Hashemi, H., 2022. EEI attributes for fluid discrimination using fuzzy labeled multiclass support vector machine. Journal of Seismic Exploration, 31: 375-390. In exploration seismology, automatic seismic facies analysis to discriminate different facies and fluid content is an essential task to reduce future drilling risks. There are different seismic attributes as learning features and various learning methods for automatic seismic facies analysis. Previous studies have proved that selecting efficient seismic attributes is more crucial than the learning method. Therefore, it is logical to pay more attention to the choice of proper attributes. The extended elastic impedance (EED attributes belong to prestack seismic attributes, and they are functions of compressional velocity, shear velocity, density, and chi angles. The Chi angle is the virtual incident angle and changes between -90 to +90 degrees. The innovative method demonstrates the role of fluid replacement modeling (FRM) for the supervised selection of EEI attributes at suitable chi angles as input features to train an intelligent model for the discrimination of reservoir fluid contents. The method starts with FRM to model different fluid contents of the reservoir (100% brine, 100% oil, and 100% gas) using borehole data. Then, efficient EEI (Chi) logs are selected according to the results of the EEI template analysis. Thus, EEI seismic attributes at selected Chi angle are calculated from prestack seismic data by amplitude versus offset (AVO) analysis and EEI inversion. Then, labeling of the EEI attributes is performed by fuzzy c-mean clustering (FCM). By considering membership functions, a fuzzy concept is an appropriate tool for soft clustering and an appealing method for seismic interpretation. Afterward, a classifier model of the multiclass support vector machine (SVM) is trained using the fuzzy labeled samples to predict the fluid type of unseen data. 0963-065 1/22/$5.00 © 2022 Geophysical Press Ltd. 376 The method was applied to a 3D prestack seismic data of an oil sand reservoir in the Persian Gulf to predict the fluid distribution map at the top of the reservoir. The reservoir contains a considerable amount of gas cap. Only one borehole data drilled in the oil column is available for FRM and fluid EEI template analysis. The available fluid distribution map confirms the accuracy of the resulted fluid distribution map based on the modeling of all the wells in different locations of the reservoir. This confirmation proves the application of the proposed method in fluid pore identification.
- Aminzadeh, F. and de Groot, P., 2006, Neural networks and other soft computing
- techniques with applications in the oil industry. EAGE Publications, Houten: 161.
- Aminzadeh, F. and de Groot, P., 2004. Soft computing for qualitative and quantitative
- seismic object and reservoir property prediction, Part 1: Neural network
- applications. First Break, 22: 49-54.
- Aminzadeh, F. and Wilkinson, D., 2004. Soft computing for qualitative and quantitative
- seismic object and reservoir property prediction, Part 2: Fuzzy logic
- applications. First Break, 22: 69-78.
- Avseth, P., Mukerji, T. and Mavko, G., 2006. Quantitative Seismic Interpretation:
- Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge
- University Press, Cambridge: 359.
- Bagheri, M., Riahi, M.A. and Hashemi, H., 2013. Reservoir lithofacies analysis using 3D
- seismic data in dissimilarity space. J. Geophys. Engineer., 10(3): 9.
- Bames, A.E. and Laughlin, K.J., 2002. Investigation of methods for unsupervised
- classification of seismic data. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,
- Salt Lake City: 2221- 2224.
- Barnes, A.E., 2007. Redundant and useless seismic attributes. Geophysics, 72(3), P33-
- P38.
- Bora, D.J. and Gupta, A.K., 2014. Impact of exponent parameter value for the partition
- matrix on the performance of fuzzy C means algorithm. Internat. J. Sci. Res.
- Comput. Sci. Applic. Manag. Stud., 3(3): May 2014.
- doi.org/10.48550/arXiv.1406.4007.
- Chopra, S. and Marfurt, K.J., 2007. Seismic Attributes for Prospect Identification and
- Reservoir Characterization. SEG, Tulsa, OK.
- Connolly, P., 2017. Chi. Extended Abstr., 79th EAGE Conf., Paris, Tu A3 03.
- doi: 0.3997/2214-4609.201700825.
- Connolly, P., 1999. Elastic impedance. The Leading Edge, 18: 438-452.
- Gassmann, F., 1951. Elasticity of porous media. Vierteljahrsschr. Naturforsch.
- Gesselsch., 96: 1-23.
- Hadiloo, S., Mirzaei, S., Hashemi, H. and Beiranvand, B., 2018. Comparison between
- unsupervised and supervised fuzzy clustering method in interactive mode to
- obtain the best result for extract subtle patterns from seismic facies maps.
- Geopersia, 8: 27-34.
- Hashemi, H., Javaherian, A. and Babuska, R., 2008. A semi-supervised method to detect
- seismic random noise with fuzzy GK clustering. J. Geophys. Engineer., 5: 457-
- Hashemi, H., 2010. Logical considerations in applying pattern recognition techniques on
- seismic data, Precise ruling - realistic solutions. CSEG Recorder, 35(4): 46-49.
- Hashemi, H., 2012. Fuzzy clustering of seismic sequence. IEEE Sign. Progress. Mag.,
- 29(3): 82-87.
- Hashemi, H. and Beukelaar, P., 2017. Clustering seismic datasets for optimized facies
- analysis using a SSCSOM technique. Extended Abstr., 79th EAGE Conf., Paris.
- doi: 10.3997/2214-4609.201700916.
- Khemchandani, R., Pah, A. and Chandra, S., 2016. Fuzzy least squares twin support
- vector clustering. Neural Comput. Appl. doi: 10.1007/s00521-016-2468-4.
- Khemchandani, R. and Sharma, S., 2016. Robust least squares twin support vector
- machine for human activity recognition. Appl. Soft Comput., 47: 33-46.
- Kuster, G.T. and Toks6z, M.N., 1974a. Velocity and attenuation of seismic waves in two-
- phase media - Part 1: Theoretical formulations. Geophysics, 39: 587-606.
- doi: 10.1190/1.1440450.
- Kuster, G.T. and Toks6éz, M.N., 1974b. Velocity and attenuation of seismic waves in
- two-phase media - Part 2: Experimental results. Geophysics, 39: 607-618.
- doi: 10.1190/1.1440451
- Li, G., You, J. and Liu, X., 2015. Support vector machine (SVM) based prestack AVO
- inversion and its applications. J. Appl. Geophys., 120: 60-68.
- Mardan, A., Javaherian A.R. and Mirzakhanian, M., 2017. Channel characterization
- using support vector machine. Extended Abstr., 79th EAGE Conf., Paris.
- Mavko, G., Mukerji, T. and Dvorkin, J., 2009. The Rock Physics Handbook: Tools for
- Seismic Analysis of Porous Media. Cambridge University Press, Cambridge.
- Mirzakhanian, M., Sharifi, J., Sokooti, M.R. and Mondol, N.H., 2017. Sensitivity
- analysis of multi-angle extended elastic impedance (MEED to fluid content: A
- carbonate reservoir case study from an Iranian oil field. Abstr., 3rd Seminar
- Petroleum Geophysical Exploration.
- Mirzakhanian, M., Khoshdel, H., Asnaashar, A. and Sokooti, R. 2015. Reservoir
- Discrimination Using EEI Analysis. Extended Abstr., 77th EAGE Conf., Madrid.
- Mirzakhanian, M. and Hashemi, H., 2022a. ANFIS rules driven integrated seismic and
- petrophysical facies analysis. J. Earth Space Phys., 47(4): 133-141.
- doi: 10.22059/JESPHY S.2022.331894.1007370.
- Mirzakhanian, M. and Hashemi, H., 2022b. Semi-supervised fuzzy clustering for facies
- analysis using EEI seismic attributes. Geophysics, 87(4): N75-N84.
- doi: https://doi.org/10.1190/geo2021-0330.1.
- Na'imi, S.R., Shadizadeh, S.R., Riahi, M.A. and Mirzakhanian M., 2014. Estimation of
- reservoir porosity and water saturation based on seismic attributes using support
- vector regression approach. J. Appl. Geophys., 107: 93-101.
- Nishitsuji, Y. and Exley, R. 2019. Elastic impedance based facies classification using
- support-vector-machine and deep-learning. Geophys. Prosp., 67: 1040-1054.
- Reine, C., 2015, A rock-physics tutorial: Discovering a supermodel. GeoConvention
- 2015, CSEG/CSPG/CWLS.
- Samba, C., Lu, H. and Mukhtar, H.J., 2017. Reservoir properties prediction using
- extended elastic impedance. The case of Nianga field of West African Congo
- basin. J. Petrol. Explor. Product. Technol., 7: 673-686.
- doi: 10.1007/s13202-017-0328-0.
- Sharifi, J., HafeziMoghadam, N., Lashkaripour, G.R., Javaherian, A and Mirzakhanian,
- M., 2019. Application of extended elastic impedance in seismic geomechanics.
- Geophysics, 84(3): 429-446.
- Sharifi, J. and Mirzakhanian, M., 2019. Full-angle extended elastic impedance.
- Interpretation, 7(4): T869-T885.
- Saberi, M.R., Johansen, T.A. and Talbot, M.R., 2009. Textural and burial effects on rock
- physics characterization of chalks. Petrol. Geosci., 15: 355-365.
- doi: 10.1144/1354-079309-836.
- Salimi Sartakhti, J., Afrabandpey, H. and Ghadiri, N., 2018. Fuzzy least squares twin
- support vector machines, arXiv: 1505.05451v3 [cs.AI] 21 Nov.
- Shang, R.; Meng, Y., Liu, C., Jiao, L., Ghalamzan Esfahani, A.M. and Stolkin, R., 2019.
- Unsupervised feature selection based on kernel fisher discriminant analysis and
- regression learning. Machine, 108: 659-686. doi.org/10.1007/s10994-018-5765-6.
- Tomar, D. and Agarwal, S., 2015. Multiclass least squares twin support vector machine f
- or pattern classification. Internat. J. Database Theory Applicat., 8: 285-302.
- Wang, D., Zhang, M., Li, J., Li, Z., Li, J.Q., Song, C. and Chen, X., 2017. Intelligent
- constellation diagram analyzer using convolutional neural network-based deep
- learning. Optics Express, 25: 17150-17166. doi: 10 .1364/0E.25.017150.
- Whitcombe, D.N., 2002. Elastic impedance normalization. Geophysics, 67: 60-62.
- doi: 10.1190/1.1451331.
- Whitcombe, D.N., Connolly, P.A., Reagan, R.L. and Redshaw, T.C., 2002. Extended
- elastic impedance for fluid and lithology prediction. Geophysics, 67: 63-67.
- doi: 10.1190/1.1451337.
- Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. The
- Leading Edge, 28: 66-74. doi: 10 .1190/1.3064148.
- Wrona, T., Pan, I., Gawthorpe, R.L. and Fossen, H., 2018. Seismic facies analysis using
- machine learning. Geophysics, 83(5): 83-95.
- Xu, S. and White, R.E., 1995, A new velocity model for claysand mixtures. Geophys.
- Prosp., 43: 91-118. doi: 10.1111/.1365-2478.1995 .tb00126.x
- Yenwongfai, H.D., Mondol, N.H., Faleide, JI. and Lecomte, I., 2017. Prestack
- simultaneous inversion to predict lithology and pore fluid in the Realgriinnen
- Subgroup of the Goliat Field, southwestern Barentz Sea. Interpretation, 5(2): 75-
- doi: 10.1190/INT-2016-0109.1.
- Zhao, Z., Wang, L. and Liu, H., 2010. Efficient spectral feature selection with minimum
- redundancy. Proc. 24th AAAI Conf. Artificial Intelligent: 673-678.
- Zhao, T., 2018, Seismic facies classification using different deep convolutional neural
- networks. Expanded Abstr., 88th Ann. Internat. SEG Mtg., Anaheim: 2046-2050.
- Zoeppritz, K., 1919. Erdbebenwellen VIII B, Uber die Reflexion und Durchgang
- seismischer Wellen durch Unstetigkeitsflachen. Gottinger Nachr., 1: 66-84.