Self-guided attention denoising network for pre-stack seismic data: from coarse to fine

Background noise attenuation is one of the most essential steps in seismic data processing. Residual background noise is likely to cause some artifacts in the following seismic imaging, thus bringing huge difficulties to the final interpretation. In recent years, deep-learning (DL) methods based on data driven strategy, especially the convolutional neural network (CNN), work well in seismic noise attenuation. In addition, it is applied automatically without parameter fine-tuning after training. To further improve their performance, we propose a novel architecture: self-guided attention network (SGA-Net) by combining self-guided strategy and spatial attention mechanism. Different from most of the conventional CNNs, this proposed SGA-Net can capture multi-scale features by performing the convolution operation on seismic data with different resolutions. In this network, the self-guided strategy is adopted to take full advantage of the multi-scale features; specifically, we utilize the global coarse features extracted at low resolution to guide the extraction process of local finer features at higher resolution. Furthermore, we design a spatial attention module with two inputs to fuse the global coarse and local fine features. We set up four competitive methods for SGA-Net including two traditional seismic denoising methods and two existing DL denoising methods in both synthetic and real experiments and experimental results demonstrate the advantage of SGA-Net both in noise attenuation and signal preservation.
- Beckouche, S. and Ma, J., 2014. Simultaneous dictionary learning and denoising for
- seismic data. Geophysics, 79(3): A27-A31.
- Bekara, M. and van der Baan, M., 2007. Local singular value decomposition for signal
- enhancement of seismic data. Geophysics, 72(2): V59-V65.
- Birnie, C., Ravasi, M., Liu, S. and Alkhalifah, T., 2021. The potential of self-supervised
- networks for random noise suppression in seismic data. Artif. Intellig., 2: 47-59.
- Cadzow, J., 1988. Signal enhancement-a composite property mapping algorithm. IEEE
- Transact. Acoust., Speech Sign. Process., 36: 49-62.
- Chen, K. and Sacchi, M.D., 2015. Robust reduced-rank filtering for erratic seismic noise
- attenuation. Geophysics, 80(1): V1-V11.
- Chen, K. and Sacchi, M.D., 2017. Robust f-x projection filtering for simultaneous
- random and erratic seismic noise attenuation. Geophys. Prosp., 65: 650-668.
- Chen, Y., 2020. Fast dictionary learning for noise attenuation of multidimensional
- seismic data. Geophys. J. Internat., 222: 1717-1727.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by fx empirical-mode
- decomposition predictive filtering. Geophysics, 79(3): V81-V91.
- Cheng, J., Chen, K. and Sacchi, M.D., 2015. Application of robust principal component
- analysis (RPCA) to suppress erratic noise in seismic records. Expanded Abstr.,
- 4646-4651.
- Cui, Y., Xia, J., Wang, Z., Gao, S. and Wang, L., 2022. Lightweight spectral-spatial
- attention network for hyperspectral image classification. IEEE Transact. Geosci.
- Remote Sens., 60:1-14.
- Dong, X., Jiang, H., Zheng, S., Li, Y., and Yang, B., 2019a. Signal-to-noise ratio
- enhancement for 3C downhole microseismic data based on the 3D shearlet transform
- and improved back-propagation neural networks. Geophysics, 84(4): V245-V254.
- Dong, X., Li, Y. and Yang, B., 2019b. Desert low-frequency noise suppression by using
- adaptive DnCNNs based on the determination of high-order statistic. Geophys. J.
- Internat., 219: 1281-1299.
- Dong, X. and Li, Y. 2021. Denoising the optical fiber seismic data by using
- convolutional adversarial network based on loss balance. IEEE Transact. Geosci.
- Remote Sens., 59: 10544-10554.
- Elboth, T., Presterud, I.V. and Hermansen, D., 2010. Time-frequency seismic data
- de-noising. Geophys. Prosp., 58: 441-453.
- Gomez, J.L., Velis, D.R. and Sabbione, J.I., 2020. Noise suppression in 2D and 3D
- seismic data with data-driven sifting algorithms. Geophysics, 85(1): V1-V10.
- Gu, S., Guo, S., Zuo, W., Chen, Y., Timofte, R., Van Gool, L. and Zhang, L. 2020.
- Learned dynamic guidance for depth image reconstruction. IEEE Transact. Pattern
- Analys. Mach. Intellig., 42: 2437-2452.
- Gulunay, N., 1986. FX decon and complex Wiener prediction filter. Expanded Abstr.,
- 90th Ann. Internat. SEG Mtg., Houston: 279-281.
- He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image
- recognition. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas.
- Herrmann, F. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
- curvelet frames. Geophys. J. Internat., 173: 233-248.
- Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with
- neural networks. Science, 313(5786): 504-507.
- Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C. and Liu,
- H., 1998. The empirical mode decomposition and Hilbert spectrum for nonlinear and
- non-stationary time series analysis. Proc. Royal Soc. London, A 454: 903-995.
- Hui, T., Loy, C.C. and Tang, X., 2016. Depth map super-resolution by deep multi-scale
- guidance. Europ. Conf. Comput. Vision, Amsterdam.
- Kaur, H., Fomel, S. and Pham, N., 2021. Seismic ground-roll noise attenuation using
- deep learning. Geophys. Prosp., 68: 2064-2077.
- Krohn, C., Ronen, S., Deere, J. and Gulunay, N., 2008. Introduction to this special
- section: Seismic noise. The Leading Edge, 27: 163-165.
- Lecun, Y., Bengio, Y. and Hinton, G.E., 2015. Deep learning. Nature, 521(7553):
- 436-444.
- Liu, N., Li, F., Wang, D., Gao, J. and Xu, Z., 2022. Ground-roll separation and
- attenuation using curvelet-based multichannel variational mode decomposition. IEEE
- Transact. Geosci. Remote Sens., 60: 1-14.
- Liu, W., Yan, Q. and Zhao, Y., 2020. Densely self-guided wavelet network for image
- denoising. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit. Workshops,
- Seattle.
- Mousavi, S.M. and Langston, C.A., 2016. Hybrid seismic denoising using higher-order
- statistics and improved wavelet block thresholding. Bull. Seismol. Soc. Am., 106:
- 1380-1393.
- Naghizadeh, M. and Sacchi, M.D., 2018. Ground-roll attenuation using curvelet
- downscaling. Geophysics, 83(3): V185-V195.
- Oropeza, V. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and
- reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3):
- V25-V32.
- Trickett, S., 2008. F-xy Cadzow noise suppression. CSPG CSEG CWLS Conv., Las
- Vegas: 303-306.
- Saad, O.M. and Chen, Y., 2021. A fully unsupervised and highly generalized deep
- learning approach for random noise suppression. Geophys. Prosp., 69: 709-726.
- Shan, H., Ma, J. and Yang H., 2009. Comparisons of wavelets, contourlets and curvelets
- in seismic denoising. J. Appl. Geophys., 69: 103-115.
- Simonyan, K. and Zisserman, A., 2015. Very deep convolutional networks for
- large-scale image recognition. 3rd Internat. Conf. Learning Representat., Montreal.
- Schneider, W.A., 1984. The common depth point stack. Proc. IEEE Conf., 72:
- 1238-1254.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.
- and Polosukhin, I., 2017. Attention is all you need. Adv. Neural Informat. Process.
- Syst., 5998-6008.
- Wang, H., Chen, W., Huang, W., Zu, S., Liu, X., Yang, L. and Chen, Y., 2021.
- Nonstationary predictive filtering for seismic random noise suppression: a tutorial.
- Geophysics, 86(3): W21-W30.
- Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P., 2004. Image quality
- assessment: from error visibility to structural similarity. IEEE Transact. Image
- Process., 13: 600-612.
- Wright, J., Peng, Y., Ma, Y., Ganesh, A. and Rao, S., 2009. Robust principal component
- analysis: Exact recovery of corrupted low-rank matrices by convex optimization. Adv.
- Neural Informat. Process. Syst., 22-Proc. 2009 Conf., Vancouver.
- Wu, X., Shi, Y., Fomel, S., Liang, L., Zhang, Q. and Yusifov, A., 2019. FaultNet3D:
- predicting fault probabilities, strikes, and dips with a single convolutional neural
- network. IEEE Transact. Geosci. Remote Sens., 57: 9138-9155.
- Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: A
- noise-assisted data analysis method. Adv. Adapt. Data Analys., 1: 1-41.
- Yu, F. and Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions.
- 4th Internat. Conf. Learning Representat., San Juan, Puerto Rico.
- Yu, S. and Ma, J., 2021. Deep learning for Geophysics: current and future trends. Rev.
- Geophysics, 59(3), 1-36.
- Yu, S., Ma, J. and Wang, W., 2019. Deep learning for denoising. Geophysics, 84(6):
- V333-V350.
- Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L., 2017. Beyond a Gaussian
- denoiser: residual learning of deep CNN for image denoising. IEEE Transact. Image
- Process., 26: 3142-3155.
- Zhang, Z. and Alkhalifah, T., 2019. Regularized elastic full-waveform inversion using
- deep learning. Geophysics, 84(5): R741-R751.
- Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J., 2017. Pyramid scene parsing network.
- IEEE Conf. Computer Vision and Pattern Recognition, Honolulu.
- Zhong, T., Li, Y., Wu, N., Nie, P. and Yang, B., 2015. A study on the stationarity and
- Gaussianity of the background noise in land-seismic prospecting. Geophysics, 80(4):
- V67-V82.
- Zhu, W. and Beroza, G.C., 2019. PhaseNet: a deep-neural-network-based seismic
- arrival-time picking method. Geophys. J. Internat., 216: 261-273.
- Zhu, W., Mousavi, S.M. and Beroza, G.C., 2019. Seismic signal denoising and
- decomposition using deep neural networks. IEEE Transact. Geosci. Remote Sens., 57:
- 9476-9488.