Cite this article
1
Download
10
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Physics-guided unsupervised deep-learning seismic inversion with uncertainty quantification

YU ZHANG1 SAGAR SINGH2 DAVID THANOON1 PU DEVARAKOTA2 LONG JIN ILYA TSVANKIN`3`1
Show Less
1 Shell International Exploration and Production Inc., Houston, TX 77082, U.S.A.,
2 Shell Global Solutions (US), Inc., Houston, TX 77082, U.S.A.Present address: NVIDIA, Boulder, CO 80301, U.S.A.,
3 Colorado School of Mines, Golden, CO 80401, U.S.A.,
JSE 2023, 32(3), 257–270;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, Y., Singh, S., Thanoon, D., Devarakota, P., Jin, L. and Tsvankin, I., 2023. Physics-guided unsupervised deep-learning seismic inversion with uncertainty quantification. Journal of Seismic Exploration, 32: 257-270. Data-driven seismic inversion techniques are often used for estimation of subsurface properties. Employing the acoustic or elastic wave equation, inversion starts with approximate initial values of subsurface parameters, which are typically updated in iterative fashion. Here, we propose a two-stage unsupervised machine-learning (ML) methodology for efficient and accurate seismic impedance inversion. The first stage utilizes the generalization capability of convolutional neural networks (CNN) to produce realistic estimates of the acoustic impedance (AI), whereas the second stage incorporates physics information to generate synthetic data from the subsurface AI distribution. We also add Bayesian layers to the first stage of the network to evaluate the model errors. The proposed probabilistic approach to deep learning allows one to estimate the uncertainty of the inverted parameters, which enhances the interpretability of the model. We apply the algorithm to a poststack data set generated using the CGG Hampson- Russell software. After conducting network training with a sufficient number of data points, the network is applied to the rest of the data to estimate the model parameters. The developed approach has a significant advantage over more conventional ML strategies because it produces statistically justified uncertainty maps and eliminates the need to use labeled data for training.

Keywords
seismic inversion
physics guided machine learning
unsupervised learning
uncertainty quantification
model evaluation
References
  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
  2. Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
  3. G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J.,
  4. Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J.,
  5. Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Wanhoucke, V., Vasudevan,
  6. V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.
  7. and Zheng, X., 2016. TensorFlow: Large-scale machine learning on heterogeneous
  8. systems. 12th USENIX Symposium Operating Systems, Design and
  9. Implementation: 265-283.
  10. Biswas, R., Sen, M.K. and Das, V. and Mukerji, T., 2019. Prestack and poststack
  11. inversion using a physics-guided convolutional neural network. Interpretation,
  12. 7(3): SE161-SE174.
  13. Das, V., Pollack, A., Wollner, U. and Mukerji, T., 2018. Convolutional neural network
  14. for seismic impedance inversion. Expanded Abstr., 88th Ann. Internat. SEG Mtg.,
  15. Anaheim: 2071-2075.
  16. Di, H., Wang, Z. and AlRegib, G., 2018. Deep convolutional neural networks for
  17. seismic salt-body delineation. AAPG Ann. Conv., Salt Lake City.
  18. Graves, A., 2011. Practical variational inference for neural networks. Conf. Advances
  19. Neural Informat. Process. Syst.: 2348-2356.
  20. Guitton, A., 2011. A blocky regularization scheme for full waveform inversion.
  21. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2418-2422.
  22. Guitton, A., 2018. 3D convolutional neural networks for fault interpretation. Extended
  23. Abstr., 80th EAGE Conf., Copenhagen: 1 一 5.
  24. LaBonte, T., Martinez, C. and Roberts, S.A., 2020. We know where we don’t know: 3D
  25. Bayesian CNNs for credible geometric uncertainty.
  26. arXiv Preprint, arXiv: 1910.10793.
  27. Loris, I., Douma, H., Nolet, G., Daubechies, I. and Regone, C., 2010. Nonlinear
  28. regularization techniques for seismic tomography. J. Computat. Phys., 229: 890-
  29. Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for
  30. biomedical image segmentation. arXiv Preprint, arXiv: 1505.04597.
  31. Russell, B.H., 1988. Introduction to Seismic Inversion Methods. SEG, Tulsa, OK.
  32. Sen, M.K., 2006. Seismic Inversion. SPE, Houston, TX.
  33. Sen, M.K. and Stoffa, P.L., 2013. Global Optimization Methods in Geophysical
  34. Inversion. Cambridge University Press, Cambridge.
  35. Sen, M.K. and Biswas, R., 2014. Choice of regularization weight in basis pursuit
  36. reflectivity inversion. J. Geophys. Engineer., 12: 70-79.
  37. Sen, M.K. and Biswas, R., 2017. Transdimensional seismic inversion using the reversible
  38. jump Hamiltonian Monte Carlo algorithm. Geophysics, 82(3): R119-R134.
  39. Shi, Y., Wu, X. and Fomel, S., 2019. SaltSeg: Automatic 3D salt segmentation using a
  40. deep convolutional neural network. Interpretation, 7(3): SE113-SE122.
  41. Singh, S., Tsvankin, I. and Naeini, E.Z., 2021. Elastic FWI for orthorhombic media with
  42. lithologic constraints applied via machine learning: Geophysics, 86(4): R589-
  43. R602.
  44. Singh, S., Tsvankin, I. and Zabihi Naeini, E., 2022. Facies prediction with Bayesian
  45. inference: Application of supervised and semisupervised deep learning.
  46. Interpretation, 10(2): 279-290. doi:10.1190/int-2021-0104.1.
  47. Tikhonov, A. and Arsenin, V., 1977. Solution of Ill-posed Problems. Winston and
  48. Sons, London: 1-258.
  49. Wen, Y., Vicol, P., Ba, J., Train, D. and Grosse, R., 2018. Flipout: Efficient pseudo-
  50. independent weight perturbations on mini-batches.
  51. arXiv Preprint, arXiv:1803.04386.
  52. Wu, X., Shi, Y., Fomel, S. and Liang, L., 2018. Convolutional neural networks for fault
  53. interpretation in seismic images. Expanded Abstr., 88th Ann. Internat. SEG Mtg.,
  54. Anaheim: 1946-1950.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing