Variable step size-normalized sign gradient AVO inversion algorithm

Liu, Y., Zhang, J. and Hu, G., 2014. Variable step size-normalized sign gradient AVO inversion algorithm. Journal of Seismic Exploration, 23: 265-278. Pre-stack seismic inversion faces difficulties when applied to real seismic data because of the existence of many types of noise. As we know, the /, norm minimization gives more robust solutions than the /, norm does because it is less sensitive to spiky and high-amplitude noise. To take advantage of /, norm and constraint on the deviation between two adjacent solutions, a variable step size-normalized sign gradient algorithm (VSS-NSGA) is proposed to obtain a more rational inversion result. By minimizing the An norm of the error vector with a minimum disturbance constraint, the proposed VSS-NSGA not only reduces the computational cost of the large scale seismic inversion problems but also avoids the instability of the /, norm solution using the iteratively reweighted least squares (IRLS) algorithm. Furthermore, the variable step size is introduced to overcome the contradiction of the fast convergence rate and small steady-state error brought by fixed step size. Synthetic tests demonstrate that the proposed VSS-NSGA algorithm out-performs the traditional IRLS method in both convergence rate and steady-state error. The real data example shows the validity of the proposed method for AVO inversion.
- Bube, K. and Langan, R., 1997. Hybrid /,/l, minimization with applications to tomography.
- Geophysics, 62: 1183-1195.
- Chapman, N. and Barrodale, I., 1983. Deconvolution of marine seismic data using the J, norm.
- Geophys. J. Internat., 72: 93-100.
- Claerbout, J. and Muir, F., 1973. Robust modeling with erratic data. Geophysics, 38: 826-844.
- Gersztenkorn, A., Bednar, J. and Lines, L., 1986. Robust iterative inversion for the one-dimensional
- acoustic wave equation. Geophysics, 51: 357-368.
- Guitton, A. and Symes, W., 2003. Robust inversion of seismic data using the Huber norm.
- Geophysics, 68: 1310-1319.
- Ji, J., 2006. Hybrid /,//, norm IRLS method with application to velocity-stack inversion. Extended
- Abstr., 68th EAGE Conf., Vienna.
- Lavaud, B., Kabir, N. and Chavent, G., 1999. Pushing AVO inversion beyond linearized
- approximation. J. Seism. Explor., 8: 279-302.
- Li, H., Han, L.G. and Li, Z., 2012. Inverse spectral decomposition with the SPG7 algorithm. J.
- Geophys. Engin., 9: 423-427.
- Li, Y., Zhang, Y. and Claerbout, J., 2010. Geophysical applications of a novel and robust /, solver.
- Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver, 29: 3519-3523.
- Liu, H.F., Ruan, B.Y., Liu, J.X. and Lv, Y.Z., 2007. Optimized inversion method based on mixed
- norm. Chin. J. Geophys., 50: 1877-1883.
- Riedel, M., Dosso, S. and Beran, L., 2003. Uncertainty estimation for amplitude variation with offset
- (AVO) inversion. Geophysics, 68: 1485-1496.
- Rodi, W. and Mackie, R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric
- inversion. Geophysics, 66: 174-187.
- Saraswat, P. and Sen, M.K., 2012. Pre-stack inversion of angle gathers using hybrid evolutionary
- algorithm. J. Seism. Explor., 21: 177-200.
- Scales, J. and Gersztenkorn, A., 1988. Robust methods in inverse theory. Inverse Probl., 4:
- 1071-1091.
- Sun, Q., Castagna, J.P. and Liu, Z.P., 2004. AVO anomaly detection by artificial neural network.
- J. Seism. Explor., 12: 279-313.
- Tanaka, K. and Sugeno, M., 1992. Stability analysis and design of fuzzy control systems. Fuzzy Sets
- Syst., 45: 135-156.
- Tarantola, A., 1987. Inverse Problem Theory. Elsevier Science Publishing Co., Amsterdam.
- Taylor, H.L., Banks, S.C. and McCoy, J.F., 1979. Deconvolution with the /, norm. Geophysics, 44:
- 39-52.
- Vega, L.R., Rey, H. and Benesty, J., 2010. A robust variable step-size affine projection algorithm.
- Signal Proc., 90: 2806-2810.
- Zhang, J.S., Lv, S.F., Liu, Y. and Hu, G.M., 2013. AVO inversion based on generalized extreme
- value distribution with adaptive parameter estimation. J. Appl. Geophys., 98: 11-20.
- Zhang, Z., Chunduru, R. and Jervis, M., 2000. Determining bed boundaries from inversion of EM
- logging data using general measures of model structure and data misfit. Geophysics, 65:
- 76-82.
- Zou, Y. and Downton, J., Cai, Z. and Davaraj, S., 2006. AVO inversion to successful drilling: Oyen
- 3D case study. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 624-628.