ARTICLE

Variable step size-normalized sign gradient AVO inversion algorithm

YANG LIU1 JIASHU ZHANG1 GUANGMIN HU2
Show Less
1 Sichuan Key Lab of Signal and Information Processing, Southwest Jiaotong University, Chengdu, 610031, Sichuan, P.R. China,
2 School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, P.R. China,
JSE 2014, 23(3), 265–278;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, Y., Zhang, J. and Hu, G., 2014. Variable step size-normalized sign gradient AVO inversion algorithm. Journal of Seismic Exploration, 23: 265-278. Pre-stack seismic inversion faces difficulties when applied to real seismic data because of the existence of many types of noise. As we know, the /, norm minimization gives more robust solutions than the /, norm does because it is less sensitive to spiky and high-amplitude noise. To take advantage of /, norm and constraint on the deviation between two adjacent solutions, a variable step size-normalized sign gradient algorithm (VSS-NSGA) is proposed to obtain a more rational inversion result. By minimizing the An norm of the error vector with a minimum disturbance constraint, the proposed VSS-NSGA not only reduces the computational cost of the large scale seismic inversion problems but also avoids the instability of the /, norm solution using the iteratively reweighted least squares (IRLS) algorithm. Furthermore, the variable step size is introduced to overcome the contradiction of the fast convergence rate and small steady-state error brought by fixed step size. Synthetic tests demonstrate that the proposed VSS-NSGA algorithm out-performs the traditional IRLS method in both convergence rate and steady-state error. The real data example shows the validity of the proposed method for AVO inversion.

Keywords
J
norm
spiky and high-amplitude noise
minimum disturbance constraint
variable step size-normalized sign gradient algorithm (VSS-NSGA)
iteratively reweighted least squares (IRLS)
References
  1. Bube, K. and Langan, R., 1997. Hybrid /,/l, minimization with applications to tomography.
  2. Geophysics, 62: 1183-1195.
  3. Chapman, N. and Barrodale, I., 1983. Deconvolution of marine seismic data using the J, norm.
  4. Geophys. J. Internat., 72: 93-100.
  5. Claerbout, J. and Muir, F., 1973. Robust modeling with erratic data. Geophysics, 38: 826-844.
  6. Gersztenkorn, A., Bednar, J. and Lines, L., 1986. Robust iterative inversion for the one-dimensional
  7. acoustic wave equation. Geophysics, 51: 357-368.
  8. Guitton, A. and Symes, W., 2003. Robust inversion of seismic data using the Huber norm.
  9. Geophysics, 68: 1310-1319.
  10. Ji, J., 2006. Hybrid /,//, norm IRLS method with application to velocity-stack inversion. Extended
  11. Abstr., 68th EAGE Conf., Vienna.
  12. Lavaud, B., Kabir, N. and Chavent, G., 1999. Pushing AVO inversion beyond linearized
  13. approximation. J. Seism. Explor., 8: 279-302.
  14. Li, H., Han, L.G. and Li, Z., 2012. Inverse spectral decomposition with the SPG7 algorithm. J.
  15. Geophys. Engin., 9: 423-427.
  16. Li, Y., Zhang, Y. and Claerbout, J., 2010. Geophysical applications of a novel and robust /, solver.
  17. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver, 29: 3519-3523.
  18. Liu, H.F., Ruan, B.Y., Liu, J.X. and Lv, Y.Z., 2007. Optimized inversion method based on mixed
  19. norm. Chin. J. Geophys., 50: 1877-1883.
  20. Riedel, M., Dosso, S. and Beran, L., 2003. Uncertainty estimation for amplitude variation with offset
  21. (AVO) inversion. Geophysics, 68: 1485-1496.
  22. Rodi, W. and Mackie, R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric
  23. inversion. Geophysics, 66: 174-187.
  24. Saraswat, P. and Sen, M.K., 2012. Pre-stack inversion of angle gathers using hybrid evolutionary
  25. algorithm. J. Seism. Explor., 21: 177-200.
  26. Scales, J. and Gersztenkorn, A., 1988. Robust methods in inverse theory. Inverse Probl., 4:
  27. 1071-1091.
  28. Sun, Q., Castagna, J.P. and Liu, Z.P., 2004. AVO anomaly detection by artificial neural network.
  29. J. Seism. Explor., 12: 279-313.
  30. Tanaka, K. and Sugeno, M., 1992. Stability analysis and design of fuzzy control systems. Fuzzy Sets
  31. Syst., 45: 135-156.
  32. Tarantola, A., 1987. Inverse Problem Theory. Elsevier Science Publishing Co., Amsterdam.
  33. Taylor, H.L., Banks, S.C. and McCoy, J.F., 1979. Deconvolution with the /, norm. Geophysics, 44:
  34. 39-52.
  35. Vega, L.R., Rey, H. and Benesty, J., 2010. A robust variable step-size affine projection algorithm.
  36. Signal Proc., 90: 2806-2810.
  37. Zhang, J.S., Lv, S.F., Liu, Y. and Hu, G.M., 2013. AVO inversion based on generalized extreme
  38. value distribution with adaptive parameter estimation. J. Appl. Geophys., 98: 11-20.
  39. Zhang, Z., Chunduru, R. and Jervis, M., 2000. Determining bed boundaries from inversion of EM
  40. logging data using general measures of model structure and data misfit. Geophysics, 65:
  41. 76-82.
  42. Zou, Y. and Downton, J., Cai, Z. and Davaraj, S., 2006. AVO inversion to successful drilling: Oyen
  43. 3D case study. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 624-628.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing