Cite this article
1
Download
95
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Application of frequency-dependent AVO inversion to hydrocarbon detection

SHUANGQUAN CHEN1,2,3 XIANG-YANG LI1,2,3 XIAOYANG WU3
Show Less
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, P.R. China.,
2 CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, P.R. China.,
3 British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, U.K.,
JSE 2014, 23(3), 241–264;
Submitted: 30 September 2013 | Accepted: 9 April 2014 | Published: 1 July 2014
© 2014 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, S.-Q., Li, X.-Y. and Wu, X.-Y., 2014. Application of frequency-dependent AVO inversion to hydrocarbon detection. Journal of Seismic Exploration, 23: 241-264. Seismic wave dispersion results mainly from fluid flow in a heterogeneous porous medium, and reflectivity at the interface of a dispersive medium is frequency-dependent. In theoretical rock physics, reflectivity can be expressed as a function of velocities which are frequency-dependent, and the expressions of prestack Zoeppritz equations are also frequency-dependent. In this paper, we develop a frequency-dependent AVO inversion (FDAI) method that is based entirely on the frequency-dependent seismic response attributes of prestack seismic data, and apply it to a hydrocarbon detection case study. Analysis of elastic, frequency-dependent media using synthetic methods demonstrates improved hydrocarbon detection by FDAI compared to conventional AVO inversion. Application to a real field seismic dataset indicates that seismic wave dispersion resulting from the hydrocarbon inclusions can be detected using the frequency-dependent inversion method. In particular, for reservoir characterization and hydrocarbon detection, dispersion characteristics due to wave-induced fluid flow in the porous reservoir can be interpreted advantageously using the FDAI method.

Keywords
frequency-dependent
AVO inversion
dispersion
hydrocarbon detecting
time-frequency decomposition
References
  1. Arntsen, B. and Carcione, J.M., 2001. Numerical simulation of the Biot slow wave inwater-saturated Nivelsteiner sandstone. Geophysics, 66: 890-896.
  2. Aki, K. and Richards, P.G., 1980. Quantitative Seismology, Theory and Methods, Vol. 1. W.H.Freeman and Co., San Francisco.
  3. Batzle, M., Hofmann, R., Han, D. and Castagna, J., 2001. Fluid sand frequency dependent seismicvelocity of rocks. The Leading Edge, 20: 168-171.
  4. Batzle, M., Han, L.D. and Hofmann, R., 2006. Fluid mobility and frequency-dependent seismicvelocity-direct measurements. Geophysics, 71: N1-N9.
  5. Biot, M.A., 1956a. Theory of propagation of elastic waves in fluid-saturated porous solid. I.
  6. Low-frequency range. J. Acoust. Soc. Am., 28: 168-178.
  7. Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II.
  8. Higher frequency range. J. Acoust. Soc. Am., 28: 179-191.
  9. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl.Phys., 33: 1482-1498.
  10. Carcione, J.M., 2001. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic andPorous Media. Pergamon Press, Oxford. .
  11. Carcione, J.M. and Picotti, S., 2006. P-wave seismic attenuation by slow wave diffusion: Effectsof inhomogeneous rock properties. Geophysics, 71: 1-8.
  12. Castagna, J.P., Sun, S. and Siegfried, R.W., 2003. Instantaneous spectral analysis: detection oflow-frequency shadows associated with hydrocarbons. The Leading Edge, 22: 120-127.
  13. Chapman, M., 2003. Frequency dependent anisotropy due to mesoscale fractures in the presence ofequant porosity. Geophys. Prosp., 51: 369-379.
  14. Chapman, M., Lin, E. and Li, X.-Y., 2006. The influence of fluid-sensitive dispersion andattenuation on AVO analysis. Geophys. J. Internat., 167: 89-105.
  15. Chen, S.Q., Li, X.-Y. and Wang, S.X., 2012. The analysis of frequency-dependent characteristicsfor fluid detection: a physical model experiment. Appl. Geophys., 9: 195-206.
  16. Dvorkin, J., Mavko, G. and Nur, A., 1995. Squirt flow in fully saturated rocks. Geophysics, 60:97-107.
  17. Ebrom, D., 2004. The low-frequency gas shadow on seismic sections. The Leading Edge, 23: 772.
  18. Gassmann, F., 1951. Uber die Elastizitat poroser Medien. Veirteljahrsschr. Naturforsch. Gesellsch.Ziirich, 96: 1-23.
  19. Goloshubin, G.M. and Korneev, V.A., 2000. Seismic low-frequency effects from fluid-saturatedreservoir. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary: 976-979.
  20. Gurevich, B., Zyrianov, V.B. and Lopatnikov, S.L., 1997. Seismic attenuation in finely layeredporous rocks: Effects of fluid flow and scattering. Geophysics, 62: 319-324.
  21. Herrmann, F.J., 1997. A Scaling Media Representation, a Discussion on Well-logs, Fractals and
  22. Waves. Ph.D. thesis, Delft University of Technology, Delft.262 CHEN, LI & WU
  23. Innanen, K., 2011. Inversion of the seismic AVF/AVA signatures of highly attenuative targets.Geophysics, 76: RI-R14.
  24. Jakobsen, M. and Chapman, M., 2009. Unified theory of global flow and squirt flow in crackedporous media. Geophysics, 74: WA65-WA76.
  25. Johnson, D.L., 2001. Theory of frequency dependent acoustics in patchy saturated porous media.J. Acoust. Soc. Am., 110: 682-694.
  26. Keho, T., Lemanski, S., Ripple, R. and Tambunan, B., 2001. The AVO hodogram: Usingpolarization to identify anomalies. The Leading Edge, 20: 1214-1224.
  27. Korneev, V.A., Goloshubin, G.M., Daley, T.M. and Silin, D.B., 2004. Seismic low-frequencyeffects in monitoring fluid-saturated reservoirs. Geophysics, 69: 522-532.
  28. Li, X.-Y. and Zhang, Y., 2011. Seismic reservoir characterization: How can multicomponent datahelp? J. Geophys. Engin., 8: 123-141.
  29. Liner, C.L., Bell, L. and Verm, R., 2009. Direct imaging of group velocity dispersion curves inshallow water. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3317-3321.
  30. Liu, E., Queen, J.H., Li, X.Y., Maultzsch, M.S., Lynn, H.B. and Chesnokov, E.M., 2003.
  31. Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at
  32. Bluebell-Altamont field, Utah. J. Appl. Geophys., 54: 319-333.
  33. Liu, E., Chapman, M., Loizou, N. and Li, X., 2006. Applications of spectral decomposition for
  34. AVO analyses in the west of Shetland. Expanded Abstr., 76th Ann. Internat. SEG Mtg.,New Orleans: 279-283.
  35. Liu, L.F., Cao, S.Y. and Wang, L., 2011. Poroelastic analysis of frequency-dependentamplitude-versus-offset variations. Geophysics, 76: C31-C40.
  36. Mallat, $.G. and Hwang, W.L., 1992. Singularity detection and processing with wavelets. IEEETrans. Inform. Theory, 38: 617-643.
  37. Marmalyevsky, N. and Roganov, Y., 2006. Frequency depending AVO for a gas-saturatedperiodical thin-layered stack. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans:274-278.
  38. Mochizuki, S., 1982. Attenuation in partially saturated rocks. J. Geophys. Res., 87: 8598-8604.
  39. Miller, T.M. and Gurevich, B., 2004. One-dimensional random patchy saturation model for velocityand attenuation in porous rocks. Geophysics, 69: 1166-1172.
  40. Odebeatu, E., Zhang, Z., Chapman, M., Liu, E. and Li, X-Y., 2006. Application of spectraldecomposition to detection of dispersion anomalies associated with gas saturation. TheLeading Edge, 25: 206-210. i
  41. Parra, J.O., 2000. Poroelastic modei to relate seismic wave attenuation and dispersion topermeability anisotropy. Geophysics, 65: 202-210.
  42. Pride, S.R., Berryman, J.G. and Harris, J.M., 2004. Seismic attenuation due to wave induced flow.J. Geophys. Res., 109 (B1): B01201.
  43. Ren, H., Goloshubin, G. and Hilterman, F.J. 2008. Amplitude-versus-frequency variations in thinlylayered porous rocks. Expanded Abstr., 78th Ann. Internat, SEG Mtg., Las Vegas:1744-1746.
  44. Ren, H., Goloshubin, G. and Hilterman, F.J., 2009. Poroelastic analysis ofamplitude-versus-frequency variations. Geophysics, 74: 01-08.
  45. Shapiro, S.A. and Miller, T.M., 1999. Seismic signatures of permeability in heterogeneous porousmedia. Geophysics, 64: 99-103.
  46. Shuey, R., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.
  47. Smith, G.C. and Gidlow, P.M., 1987. Weighted stacking for rock property estimation and detectionof gas. Geophys. Prosp., 35: 993-1014.
  48. Wapenaar, C.P.A., 1998. Seismic reflection and transmission coefficients of a self-similar interface.Geophys. J. Internat., 135: 585-594.
  49. Wapenaar, C.P.A., van Wijngaarden, A., van Geloven, W. and van der Leij, T., 1999. Apparent
  50. AVA effects of fine layering. Geophysics, 64: 1939-1948.
  51. Wapenaar ,C.P.A., Thorbecke, J. and Draganov, D., 2004. Relations between reflection andtransmission responses of three-dimensional inhomogeneous media. Geophys. J. Internat.,156: 179-194,FREQUENCY-DEPENDENT AVO INVERSION 263
  52. White., J.E., 1975. Computed seismic speed sand attenuation in rocks with partial gas saturation.Geophysics, 40: 224-232.
  53. White, J.E., 1986. Underground Sound: Applications of Seismic Waves. Geophysical Press Ltd.,Amsterdam.
  54. White, J.E., Mikhaylova, G. and Lyakhovitskiy, F.M., 1975. Low-frequency seismic waves influid-saturated layered rocks. Izvestija (Russian Academy of Sciences), Phys. Solid Earth,11: 654-659.
  55. Wilson, A., Chapman, M. and Li, X.-Y., 2009. Frequency-dependent AVO inversion. Expanded
  56. Abstr., 79th Ann. Internat. SEG Mtg., Houston, 28: 341-345.
  57. Wolf, A., 1937. The reflection of elastic waves from transition layers of variable velocity.Geophysics, 2: 357-363.
  58. Wu, X., Chapman, M., Wilson, A. and Li, X.-Y., 2010. Estimating seismic dispersion frompre-stack data using frequency-dependent AVO inversion. Expanded Abstr., 80th Ann.Internat. SEG Mtg., Denver, 29: 341-345.
  59. Wu, X., Chapman, M. and Li, X.-Y., 2012. Frequency-dependent AVO attribute: Theory andexample. First Break, 30: 67-72.
  60. Xu, D., Wang, Y., Gan, Q. and Tang, J., 2011. Frequency-dependent seismic reflection coefficientfor discriminating gas reservoirs. J. Geophys. Engin., 8: 508.
  61. Xu, Y. and Chopra, S., 2007. Improving AVO fidelity by NMO stretching and offset-dependenttuning corrections. The Leading Edge, 26: 1548-1551.
  62. Yoo, S. and Gibson, R.L., 2005. Frequency dependent AVO analysis after target oriented stretchcorrection. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston, 24: 293-296.
  63. Zhang, S., Yin, X. and Zhang, G., 2011. Dispersion-dependent attribute and application inhydrocarbon detection. J. Geophys. Engin., 8: 498-507.
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing