Three-dimensional sparse hyperbolic Radon transform and its application to demultiple

Gong, X.B., Wang, S.C. and Zhang, P., 2018. Three-dimensional sparse hyperbolic Radon transform and its application to demultiple. Journal of Seismic Exploration, 27: 137-150. Radon transform (RT) has been widely used in seismic data processing. In this paper, we propose a fast version of three-dimensional (3D) sparse hyperbolic RT (HRT) to eliminate multiples. The adjoint operator transforms the hyperboloids of 3D gather into the points of 3D Radon space, which is used for separation of signal and noise. The forward operator transforms the points of 3D Radon space into the hyperboloids of 3D gather. By using a stretching time axis and the mixed frequency-time domain inversion, we perform the forward and adjoint 3D HRT operators as matrix-matrix multiplications in the frequency domain, which can result in high-resolution Radon panel with high computational efficiency. In addition, a monotone version of fast iterative shrinkage thresholding algorithm (MFISTA) is implemented to accelerate the convergence of the sparse RT-based inversion. Synthetic and field examples of off-shore data demonstrate that our new method can be successfully applied in this context.
- Abbad, B., Ursin, B. and Porsani, M.J., 2011. A fast, modified parabolic Radon transform.
- Geophysics, 76: V11-V24.
- Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total
- variation image denoising and deblurring problems. IEEE Transact. Image
- Process., 18: 2419-2434.
- Beylkin, G., 1987. Discrete Radon transform. IEEE Trans. Acoust., Speech Signal.
- Process., 35: 162-172.
- Bickel, S.H., 2000. Focusing aspects of the hyperbolic Radon transform. Geophysics, 65:
- 652-655.
- Cary, P.W., 1998. The simplest discrete Radon transform. Expanded Abstr., 68th Ann.
- Internat. SEG Mtg., New Orleans: 1999-2002.
- Chen, Y., Chen, K., Shi, P. and Wang. Y., 2014. Irregular seismic data reconstruction
- using a percentile-half-thresholding algorithm. J. Geophys. Engineer., 11: 065001.
- Duijndam, A.J.W., Schonewille, M.A. and Hindriks, C.O.H., 1999. Reconstruction of
- seismic signals, irregularly sampled along one spatial direction. Geophysics, 64:
- 524-538.
- Foster, D.J. and Mosher, C.C., 1992. Suppression of multiple reflections using the Radon
- transform. Geophysics, 57: 386-395.
- Gong, X., Han, L. and Li, H., 2014. Anisotropic Radon transform and its application to
- demultiple. Chin. J. Geophys. 57: 2928-2936.
- Gong, X., Yu, S. and Wang, S., 2016a. Prestack seismic data regularization using a
- time-variant anisotropic Radon transform. J. Geophys. Engineer., 13: 462-469.
- Gong, X., Wang, S. and Zhang, T., 2016b. Velocity analysis using high-resolution
- semblance based on sparse hyperbolic Radon transform. J. App. Geophys., 134:
- 146-152.
- Gong, X., Yu, C. and Wang, Z., 2017. Separation of prestack seismic diffractions using
- an improved sparse apex-shifted hyperbolic Radon transform. Explor. Geophys., 48:
- 476-484.
- Hu, J., Fomel, S., Demanet, L. and Ying, L., 2013. A fast butterfly algorithm for
- generalized Radon transforms. Geophysics, 78: U41-U51.
- Hugonnet, P., Boelle, J. and Mihoub, M., 2008. High resolution 3D parabolic Radon
- filtering. Expanded Abstr., 78th Ann. Internat. SEG Mtg., New Orleans: 2492-2496.
- Ibrahim, A. and Sacchi, M.D., 2014. Simultaneous source separation using a robust
- Radon transform. Geophysics, 79: V1-V11.
- Ibrahim, A. and Sacchi, M.D., 2015. Fast simultaneous seismic source separation using
- Stolt migration and demigration operators. Geophysics, 80: WD27-WD36.
- Karimpouli, S., Malehmir, A., Hassani, H., Khoshdel, H. and Nabi-Bidhendi, M., 2015.
- Automated diffraction delineation using an apex-shifted Radon transform. J.
- Geophys. Engineer., 12: 199-209.
- Liu, J. and Marfurt, K.J., 2004. 3-D high resolution Radon transforms applied to ground
- roll suppression in orthogonal seismic surveys. Expanded Abstr., 74th Ann. Internat.
- SEG Mtg., Denver: 2144-2147.
- Lu, W., 2013. An accelerated sparse time-invariant Radon transform in the mixed
- frequency-time domain based on iterative 2D model shrinkage. Geophysics, 78:
- V147-V155.
- Ng, M. and Perz, M., 2004. High resolution Radon transform in the t-x domain using
- “intelligent” prioritization of the Gauss-Seidel estimation sequence. Expanded Abstr.,
- 74th Ann. Internat. SEG Mtg., Denver: 2160-2163.
- Perez, D.O., Velis, D.R. and Sacchi, M.D., 2013. High-resolution prestack seismic
- inversion using a hybrid FISTA least-squares strategy. Geophysics, 78: R185-R195.
- Rodriguez, I. V., Bonar, D. and Sacchi, M.D., 2012. Microseismic data denoising using a
- 3C group sparsity constrained time-frequency transform. Geophysics, 77: V21-V29.
- Sacchi, M.D. and Ulrych, T., 1995. High-resolution velocity gathers and offset space
- reconstruction. Geophysics, 60: 1169-1177.
- Sacchi, M.D., Verschuur, D.J. and Zwartjes, P.M., 2004. Data reconstruction by
- generalized deconvolution. Expanded Abstr., 74th Ann. Internat. SEG Mtg., Denver:
- 1989-1992.
- Scales, J., Gersztenkorn, A. and Treitel, S., 1988. Fast /p solution of large sparse, linear
- systems: Application to seismic travel time tomography. J. Comput. Phys., 75:
- 314-333.
- Thorson, J.R. and Claerbout, J.F., 1985. Velocity-stack and slant-stack stochastic
- inversion. Geophysics, 50: 2727-2741.
- Trad, D., Ulrych, T. and Sacchi, M.D., 2002. Accurate interpolation with high-resolution
- time-variant Radon transforms. Geophysics, 67: 644-656.
- Trad, D., Ulrych, T. and Sacchi, M.D., 2003. Latest views of the sparse Radon transform.
- Geophysics, 68: 386-399.
- Verschuur, E., Vrolijk, J.W. and Tsingas, C., 2012. 4D reconstruction of wide azimuth
- data (WAZ) using sparse inversion of hybrid Radon transforms. Expanded Abstr.,
- 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
- Wang, H., Chen, S., Ren, H., Liang, D., Zhou, H. and She, D., 2015. Seismic data
- two-step recovery approach combining sparsity-promoting and hyperbolic Radon
- transform methods. J. Geophys. Engineer., 12: 465-476.
- Wang, J., Ng, M. and Perz, M., 2010. Seismic data interpolation by greedy local Radon
- transform. Geophysics, 75: WB225-WB234.
- Wang, Y., 2002. Antialiasing conditions in the delay-time Radon transform. Geophys.
- Prosp., 50: 665-672.
- Wang, Y., 2003a. Multiple attenuation: coping with the spatial truncation effect in the
- Radon transform domain. Geophys. Prosp., 51: 75-87.
- Wang, Y., 2003b. Sparseness-constrained least-squares inversion: application to seismic
- wave propagation. Geophysics, 68: 1633-1638.
- Xue, Y., Ma, J. and Chen, X., 2014. High-order sparse Radon transform for
- AVO-preserving data reconstruction. Geophysics, 79: V13-V22.
- Xue, Y., Yang, J., Ma, J. and Chen, Y., 2016. Amplitude-preserving nonlinear adaptive
- multiple attenuation using the high-order sparse Radon transform. J. Geophys.
- Engineer., 13: 207-219.
- Yilmaz, O., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.
- Yu, Z., Ferguson, J.. McMechan, G. and Anno, P., 2007. Wavelet-Radon domain
- dealiasing and interpolation of seismic data. Geophysics, 72: V41-V49.
- Yuan, S., Wang, S., Luo, C. and He, Y., 2015. Simultaneous multitrace impedance
- inversion with transform-domain sparsity promotion. Geophysics, 80: R71—R80.
- Zhang, L., Wang, Y., Zheng, Y. and Chang, X., 2015. Deblending using a high-resolution
- ak aaa in a common midpoint domain. J. Geophys. Engineer., 12:
- 167-174.
- Zhang, Y. and Lu, W., 2014a. 2D and 3D prestack seismic data regularization using an
- accelerated sparse time-invariant Radon transform. Geophysics, 79: V165-V177.
- Zhang, Y. and Lu, W., 2014b. A 3D constrained hybrid linear-pseudo hyperbolic Radon
- transform. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 4350-4354.