ARTICLE

Three-dimensional sparse hyperbolic Radon transform and its application to demultiple

JSE 2018, 27(2), 137–150;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Gong, X.B., Wang, S.C. and Zhang, P., 2018. Three-dimensional sparse hyperbolic Radon transform and its application to demultiple. Journal of Seismic Exploration, 27: 137-150. Radon transform (RT) has been widely used in seismic data processing. In this paper, we propose a fast version of three-dimensional (3D) sparse hyperbolic RT (HRT) to eliminate multiples. The adjoint operator transforms the hyperboloids of 3D gather into the points of 3D Radon space, which is used for separation of signal and noise. The forward operator transforms the points of 3D Radon space into the hyperboloids of 3D gather. By using a stretching time axis and the mixed frequency-time domain inversion, we perform the forward and adjoint 3D HRT operators as matrix-matrix multiplications in the frequency domain, which can result in high-resolution Radon panel with high computational efficiency. In addition, a monotone version of fast iterative shrinkage thresholding algorithm (MFISTA) is implemented to accelerate the convergence of the sparse RT-based inversion. Synthetic and field examples of off-shore data demonstrate that our new method can be successfully applied in this context.

Keywords
Radon transform
three-dimensional
sparse
demultiple
References
  1. Abbad, B., Ursin, B. and Porsani, M.J., 2011. A fast, modified parabolic Radon transform.
  2. Geophysics, 76: V11-V24.
  3. Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total
  4. variation image denoising and deblurring problems. IEEE Transact. Image
  5. Process., 18: 2419-2434.
  6. Beylkin, G., 1987. Discrete Radon transform. IEEE Trans. Acoust., Speech Signal.
  7. Process., 35: 162-172.
  8. Bickel, S.H., 2000. Focusing aspects of the hyperbolic Radon transform. Geophysics, 65:
  9. 652-655.
  10. Cary, P.W., 1998. The simplest discrete Radon transform. Expanded Abstr., 68th Ann.
  11. Internat. SEG Mtg., New Orleans: 1999-2002.
  12. Chen, Y., Chen, K., Shi, P. and Wang. Y., 2014. Irregular seismic data reconstruction
  13. using a percentile-half-thresholding algorithm. J. Geophys. Engineer., 11: 065001.
  14. Duijndam, A.J.W., Schonewille, M.A. and Hindriks, C.O.H., 1999. Reconstruction of
  15. seismic signals, irregularly sampled along one spatial direction. Geophysics, 64:
  16. 524-538.
  17. Foster, D.J. and Mosher, C.C., 1992. Suppression of multiple reflections using the Radon
  18. transform. Geophysics, 57: 386-395.
  19. Gong, X., Han, L. and Li, H., 2014. Anisotropic Radon transform and its application to
  20. demultiple. Chin. J. Geophys. 57: 2928-2936.
  21. Gong, X., Yu, S. and Wang, S., 2016a. Prestack seismic data regularization using a
  22. time-variant anisotropic Radon transform. J. Geophys. Engineer., 13: 462-469.
  23. Gong, X., Wang, S. and Zhang, T., 2016b. Velocity analysis using high-resolution
  24. semblance based on sparse hyperbolic Radon transform. J. App. Geophys., 134:
  25. 146-152.
  26. Gong, X., Yu, C. and Wang, Z., 2017. Separation of prestack seismic diffractions using
  27. an improved sparse apex-shifted hyperbolic Radon transform. Explor. Geophys., 48:
  28. 476-484.
  29. Hu, J., Fomel, S., Demanet, L. and Ying, L., 2013. A fast butterfly algorithm for
  30. generalized Radon transforms. Geophysics, 78: U41-U51.
  31. Hugonnet, P., Boelle, J. and Mihoub, M., 2008. High resolution 3D parabolic Radon
  32. filtering. Expanded Abstr., 78th Ann. Internat. SEG Mtg., New Orleans: 2492-2496.
  33. Ibrahim, A. and Sacchi, M.D., 2014. Simultaneous source separation using a robust
  34. Radon transform. Geophysics, 79: V1-V11.
  35. Ibrahim, A. and Sacchi, M.D., 2015. Fast simultaneous seismic source separation using
  36. Stolt migration and demigration operators. Geophysics, 80: WD27-WD36.
  37. Karimpouli, S., Malehmir, A., Hassani, H., Khoshdel, H. and Nabi-Bidhendi, M., 2015.
  38. Automated diffraction delineation using an apex-shifted Radon transform. J.
  39. Geophys. Engineer., 12: 199-209.
  40. Liu, J. and Marfurt, K.J., 2004. 3-D high resolution Radon transforms applied to ground
  41. roll suppression in orthogonal seismic surveys. Expanded Abstr., 74th Ann. Internat.
  42. SEG Mtg., Denver: 2144-2147.
  43. Lu, W., 2013. An accelerated sparse time-invariant Radon transform in the mixed
  44. frequency-time domain based on iterative 2D model shrinkage. Geophysics, 78:
  45. V147-V155.
  46. Ng, M. and Perz, M., 2004. High resolution Radon transform in the t-x domain using
  47. “intelligent” prioritization of the Gauss-Seidel estimation sequence. Expanded Abstr.,
  48. 74th Ann. Internat. SEG Mtg., Denver: 2160-2163.
  49. Perez, D.O., Velis, D.R. and Sacchi, M.D., 2013. High-resolution prestack seismic
  50. inversion using a hybrid FISTA least-squares strategy. Geophysics, 78: R185-R195.
  51. Rodriguez, I. V., Bonar, D. and Sacchi, M.D., 2012. Microseismic data denoising using a
  52. 3C group sparsity constrained time-frequency transform. Geophysics, 77: V21-V29.
  53. Sacchi, M.D. and Ulrych, T., 1995. High-resolution velocity gathers and offset space
  54. reconstruction. Geophysics, 60: 1169-1177.
  55. Sacchi, M.D., Verschuur, D.J. and Zwartjes, P.M., 2004. Data reconstruction by
  56. generalized deconvolution. Expanded Abstr., 74th Ann. Internat. SEG Mtg., Denver:
  57. 1989-1992.
  58. Scales, J., Gersztenkorn, A. and Treitel, S., 1988. Fast /p solution of large sparse, linear
  59. systems: Application to seismic travel time tomography. J. Comput. Phys., 75:
  60. 314-333.
  61. Thorson, J.R. and Claerbout, J.F., 1985. Velocity-stack and slant-stack stochastic
  62. inversion. Geophysics, 50: 2727-2741.
  63. Trad, D., Ulrych, T. and Sacchi, M.D., 2002. Accurate interpolation with high-resolution
  64. time-variant Radon transforms. Geophysics, 67: 644-656.
  65. Trad, D., Ulrych, T. and Sacchi, M.D., 2003. Latest views of the sparse Radon transform.
  66. Geophysics, 68: 386-399.
  67. Verschuur, E., Vrolijk, J.W. and Tsingas, C., 2012. 4D reconstruction of wide azimuth
  68. data (WAZ) using sparse inversion of hybrid Radon transforms. Expanded Abstr.,
  69. 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  70. Wang, H., Chen, S., Ren, H., Liang, D., Zhou, H. and She, D., 2015. Seismic data
  71. two-step recovery approach combining sparsity-promoting and hyperbolic Radon
  72. transform methods. J. Geophys. Engineer., 12: 465-476.
  73. Wang, J., Ng, M. and Perz, M., 2010. Seismic data interpolation by greedy local Radon
  74. transform. Geophysics, 75: WB225-WB234.
  75. Wang, Y., 2002. Antialiasing conditions in the delay-time Radon transform. Geophys.
  76. Prosp., 50: 665-672.
  77. Wang, Y., 2003a. Multiple attenuation: coping with the spatial truncation effect in the
  78. Radon transform domain. Geophys. Prosp., 51: 75-87.
  79. Wang, Y., 2003b. Sparseness-constrained least-squares inversion: application to seismic
  80. wave propagation. Geophysics, 68: 1633-1638.
  81. Xue, Y., Ma, J. and Chen, X., 2014. High-order sparse Radon transform for
  82. AVO-preserving data reconstruction. Geophysics, 79: V13-V22.
  83. Xue, Y., Yang, J., Ma, J. and Chen, Y., 2016. Amplitude-preserving nonlinear adaptive
  84. multiple attenuation using the high-order sparse Radon transform. J. Geophys.
  85. Engineer., 13: 207-219.
  86. Yilmaz, O., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.
  87. Yu, Z., Ferguson, J.. McMechan, G. and Anno, P., 2007. Wavelet-Radon domain
  88. dealiasing and interpolation of seismic data. Geophysics, 72: V41-V49.
  89. Yuan, S., Wang, S., Luo, C. and He, Y., 2015. Simultaneous multitrace impedance
  90. inversion with transform-domain sparsity promotion. Geophysics, 80: R71—R80.
  91. Zhang, L., Wang, Y., Zheng, Y. and Chang, X., 2015. Deblending using a high-resolution
  92. ak aaa in a common midpoint domain. J. Geophys. Engineer., 12:
  93. 167-174.
  94. Zhang, Y. and Lu, W., 2014a. 2D and 3D prestack seismic data regularization using an
  95. accelerated sparse time-invariant Radon transform. Geophysics, 79: V165-V177.
  96. Zhang, Y. and Lu, W., 2014b. A 3D constrained hybrid linear-pseudo hyperbolic Radon
  97. transform. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 4350-4354.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing