ARTICLE

Simultaneous separation, interpolation and tube wave suppression of vertical seismic profiling using matching pursuit based sparse beam forming

JIANGTAO HU1,2 JUNXING CAO1,2 HUAZHONG WANG3 XINGJIAN WANG1 XUDONG JIANG1,2
Show Less
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, 1 Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China,
College of Geophysics, Chengdu University of Technology, 1 Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China,
WPI, School of Ocean and Earth Science, Tongji University, 1239 Siping Rd, Shanghai 200092, P.R. China,
JSE 2018, 27(2), 117–135;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Hu, J.T., Cao, J.X., Wang, H.Z., Wang, X.J. and Jiang, X.D., 2018. Simultaneous separation, interpolation and tube wave suppression of vertical seismic profiling using matching pursuit based sparse beam forming. Journal of Seismic Exploration, 27: 117-135. Since the vertical seismic profiling acquires seismic data with high resolution and superior S/N ratio, it is essential for reservoir monitoring in seismic exploration. The vertical seismic profiling data is usually separated into down-going and up-going wavefields in its processing procedure. The wavefield separation is mainly achieved by frequency-wavenumber method and plane wave decomposition method. However, when the vertical seismic profiling data is aliased, these methods perform poorly. Besides, to preserve the high frequency component during the wavefield separation, the data interpolation is required to avoid the aliasing effect of the signal. Furthermore, there is usually strongly aliased tube wave noise in the vertical seismic profiling data which poses challenge for the wavefield separation and subsequent processing steps. In this paper, we propose a solution using matching pursuit based sparse beam forming and it can simultaneously separate the wavefield, interpolate the data and suppress the tube wave noise. The matching pursuit based sparse beam forming is guided by the un-aliased information of the data. Thus, it can handle the aliasing effect of both signal and tube wave noise. Since the sparse beam forming method obtains beam forming result with superior resolution of the ray parameter, it can separate the wavefield and suppress the tube wave noise based on their differences in the ray parameter domain. Then the filtered data can be backward transformed to a denser grid for a better preservation of the high frequency component. Numerical examples on both synthetic and real data show that the proposed method works well in terms of wavefield separation, tube wave suppression and data interpolation.

Keywords
wavefield separation
tube wave suppression
wavefield interpolation
vertical seismic profiling
sparse beam forming
References
  1. Blias, E., 2007. VSP wavefield separation: wave-by-wave optimization approach.
  2. Geophysics, 72(4): T47-T55.
  3. Dean, T., Tulett, J., Puckett, M., Lane, D., 2013. Improving land VSP resolution through
  4. the use of a broadband vibroseis source. Expanded Abstr., 83rd Ann. Internat. SEG
  5. Mtg., Houston: 5067-5071.
  6. Elad, M., 2010. Sparse and Redundant Representations: From Theory to Applications in
  7. Signal and Image Processing. Springer Verlag, New York.
  8. Freire, S.L. and Ulrych, T.J., 1988. Application of singular value decomposition to
  9. vertical seismic profiling. Geophysics, 53(6): 778-785.
  10. Gao, F., Zhang, P., Wang, B., Dirks, V., 2006. Fast beam migration-a step toward
  11. interactive imaging. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans:
  12. 2470-2473.
  13. Gao, L., Chen, W.C., Wang, B.L. and Gao, J.H., 2014. VSP wave field separation: An
  14. optimization method based on block relaxation and singular value thresholding. J.
  15. Appl. Geophys. 104: 156-162.
  16. Goetz, A., Chavarria, J.A., Paulsson, B., Karrenbach, M., Muller, K., Soroka, W.,
  17. Marmash, S. and Al-Baloushi, M., 2008. Preservation of high frequencies in
  18. wide-aperture 3D VSP data from the Middle East. Expanded Abstr., 78th Ann.
  19. Internat. SEG Mtg., Las Vegas: 3345-3349.
  20. Greenwood, A., Dupuis, C.J., Urosevic, M. and Kepic, A., 2012. Hydrophone VSP
  21. surveys in hard rock. Geophysics, 77(5): WC223-WC234.
  22. Hardage, B.A., 1981. An examination of tube wave noise in vertical seismic profiling
  23. data. Geophysics, 46: 892-903.
  24. Hu, J.T., Wang, H.Z. and Wang, X.W., 2016. Angle gathers from reverse time migration
  25. using analytic wavefield propagation and decomposition in the time domain.
  26. Geophysics 81(1): S1-S9.
  27. Hu, L. and McMechan, G.A., 1987. Wave-field transformations of vertical seismic
  28. profiles. Geophysics, 52: 307-321.
  29. Leung, V., Wong, M. and Zhang, R., 2013. Up- and Down-going wave multiples RTM
  30. imaging for VSP. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston:
  31. 5052-5056.
  32. Liu, B. and Sacchi, M.D., 2004. Minimum weighted norm interpolation of seismic
  33. records. Geophysics, 69: 1560-1568.
  34. Liu, F.Q., Zhang, G., Morton, S.A. and Leveille, J.P., 2011. An effective imaging
  35. condition for reverse-time migration using wavefield decomposition. Geophysics,
  36. 76(1): S29-S39.
  37. Lou, M., Campbell, M., Cheng, D.J. and Doherty, F., 2013. An improved parametric
  38. inversion methodology to separate P and Sv wavefields from VSP data. Expanded
  39. Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 5087-5091.
  40. Moon, W., Carswell, A., Tang, R. and Dilliston, C., 1986. Radon transform wave field
  41. separation for vertical seismic profiling data. Geophysics, 51: 942-947.
  42. Nadri, D., Urosevic, M., Wikes, P. and Asgharzadeh, M., 2012. Tube wave removal from
  43. vertical seismic profiling (VSP) surveys. Expanded Abstr., 22nd Internat. ASEG
  44. Conf., Melbourne: 1-4.
  45. Ozbek, A., 2000. Adaptive beamforming with generalized linear constraints. Expanded
  46. Abstr., 80th Ann. Internat. SEG Mtg., Denver: 2081-2084.
  47. Sacchi, M.D. and Ulrych, T.J., 1995. High-resolution velocity gathers and offset space
  48. reconstruction. Geophysics, 60: 1169-1177.
  49. Soni, A.K. and Verschuur, D.J., 2013. Imaging blended VSP data using full wavefield
  50. migration. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 5046-5051.
  51. Stewart, R.R., 1985. Median filtering: review and a new f/k analogue design. J. Can. Soc.
  52. Explor. Geophys., 1: 54-63.
  53. Sun, W.B., Sun, S.Z. and Bai, H.J., 2009. 3C-3D VSP vector wavefield separation with
  54. constrained inversion. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston:
  55. 4080-4084.
  56. Trad, D., Ulrych, T. and Sacchi, M., 2002. Accurate interpolation with high resolution
  57. time-variant Radon transforms. Geophysics, 67: 644-656.
  58. Treitel, S., Shanks, J.L. and Frasier, C.W., 1967. Some aspects of fan filtering.
  59. Geophysics, 32: 789-800.
  60. Xu, S., Zhang, Y., Pham, D. and Lambaré, G., 2005. Antileakage Fourier transform for
  61. seismic data regularization. Geophysics, 70(6): V87-V95.
  62. Zhang, Y., Sun, J.C. and Gray, S.H., 2003. Aliasing in wavefield exploration prestack
  63. migration. Geophysics, 68: 629-633.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing