ARTICLE

Seismic multi-attribute fusion using fast independent component analysis and its application

MIN ZHAO1 YUQING WANG1,2 ZHENMING PENG1,2 HAO WU1,2 YANMIN HE1,2 JINGJING ZHOU3 LIFENG YANG1
Show Less
1 School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China.,
2 Center for Information Geoscience, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China.,
3 CNPC Sichuan Petroleum Geophysical Prospecting Company, Chengdu 610213, P.R. China.,
JSE 2019, 28(1), 89–101;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhao, M., Wang, Y.Q., Peng, Z.M., Wu, H., He, Y.M., Zhou, J.J. and Yang, L.F., 2019. Seismic multi-attribute fusion using fast independent component analysis and its application. Journal of Seismic Exploration, 28: 89-101. Basic principles of independent component analysis (ICA) and fast independent component analysis (FastICA) algorithm are elaborated, and we propose an automatic fusion method of seismic multi-attribute based on FastICA. This method can calculate the transform kernel matrix rapidly using FastICA algorithm to achieve the feature fusion of several seismic attributes in the ICA domain. After that we map the synthesized attribute to the spatial domain to obtain the fusion result. Our method can remove the correlation hidden in high-order statistical characteristics between features. Finally, the application of 3D seismic data in northeastern Sichuan shows the effectiveness and rationality of the proposed method.

Keywords
ICA/FastICA
transform kernel matrix
feature fusion
seismic attributes
References
  1. Blanco, D. and Mulgrew, B., 2005. ICA in signals with multiplicative noise. IEEE
  2. Transact. Sign. Process., 53: 2648-2657.
  3. Chien, J.T. and Hsieh, H.L., 2012. Convex divergence ICA for blind source separation.
  4. IEEE Transact. Audio Speech Lang. Process., 20: 302-313.
  5. Dontchev, A.L. and Rockefeller, R.T., 2010. Newton's Method for Generalized
  6. Equations: a Sequential Implicit Function Theorem. Mathematical Programming,
  7. 123: 139-159.
  8. Eriksson, J. and Koivunen, V., 2006. Complex random vectors and ICA models:
  9. Identifiability, uniqueness, and eparability. IEEE Transact. Inform. Theory, 52:
  10. 1017-1029.
  11. Hyvarinen, A., 1997. A family of fixed-point algorithms for independent component
  12. analysis. IEEE Internat. Conf. Acoust. Speech Signal Process., 5: 3917-3920.
  13. Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent component
  14. analysis. IEEE Transact. Neural Netw., 10: 626-634.
  15. Jutten, C. and Herault, J., 1988. Une solution neuromimétique au probleme de séparation
  16. de sources. Traitem. Signal, 5: 389-403.
  17. Jha, S.K. and Yadava, R.D.S., 2011. Denoising by singular value decomposition and its
  18. application to electronic noise data processing. IEEE Sensors J., 11: 35-43.
  19. Kim, Y.G., Song, Y.J., Chang, U.D. and Kim, D.W., 2008.. Face recognition using a
  20. fusion method based on bidirectional 2DPCA. Appl. Mathemat. Computat., 205:
  21. 601-607.
  22. Li, Q.Z., Peng, Z.M., Zhou, J.J. and Zhang, P., 2014. Seismic multi-attribute fusion based
  23. on pulse coupled neural networks. Oil Geophys. Prosp., 49: 316-321.
  24. Malek, A. and Yashtini, M., 2010. Image fusion algorithms for color and gray level
  25. images based on LCLS method and novel artificial neural network: Neurocomput.,
  26. 73: 937-943.
  27. Margadan-Mendez, M., Juslin, A., Nesterov, S.V. and Kalliokoski, K., 2010. ICA based
  28. automatic segmentation of dynamic H,°O cardiac PET images. IEEE Transact.
  29. Inform. Technol. Biomed., 14: 795-802.
  30. Mitianoudis, N. and Stathaki, T., 2007. Pixel-based and region-based image fusion
  31. schemes using ICA bases. Informat. Fusion, 8: 131-142.
  32. Primlos, J.A. and Giannelli, M., 2001. Kuhn-Tucker-based stability conditions for
  33. systems with saturation. IEEE Transact. Automat. Contr., 46: 1643-1647.
  34. Raeesi, M., Moradzadeh, A., Doulati Ardejani, F. and Rahimi, M., 2012. Classification
  35. and identification of hydrocarbon reservoir lithofacies and their heterogeneity
  36. using seismic attributes, logs data and artificial neural networks. J. Petrol. Sci.
  37. Engineer., 82: 151-165.
  38. Rezvandehy, M., Aghababaei, H. and Raissi, S. H., 2011. Integrating seismic attributes in
  39. the accurate modeling of geological structures and determining the storage of the
  40. gas reservoir in Gorgan Plain (North of Iran). J. Appl. Geophys., 73: 187-195.
  41. Stokman, H. and Gevers,T., 2007. Selection and fusion of color models for image feature
  42. detection. IEEE Transact. Patt. Analys. Mach. Intellig., 29: 371-381.
  43. Shen, H., Kleinsteuber, M. and Huper, K., 2008. Local convergence analysis of FastICA
  44. and related algorithms. IEEE Transact. Neural Netw., 19: 1022-1032.
  45. Unser, M., Sage, D. and Van De Ville, D., 2009. Multiresolution monogenic signal
  46. analysis using the Riesz-Laplace wavelet transform. IEEE Transact. Image
  47. Process., 18: 2402-2417.
  48. Xie, C.F., Peng, Z.M., Zhou, J.J., Zhang, P. and Zhang, W., 2014. Seismic multi-attribute
  49. fusion based on contourlet transform. Oil Geophys. Prosp., 49: 739-744.
  50. Yang, J., Zhang, D. and Yang, J., 2007. Constructing PCA baseline algorithms to
  51. reevaluate ICA-based face-recognition performance. IEEE Transact., Man,
  52. Cybernet., Part B (Cybernetics), 37: 1015-1020.
  53. Zheng, Y., Qin, Z., Shao, L. and Hou, X., 2008. A novel objective image quality metric
  54. for image fusion based on Renyi entropy. Informat. Technol., 7: 930-935.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing