ARTICLE

Nonlinear prestack inversion using the reflectivity method and quantum particle swarm optimization

XINGYE LIU1 XIAOHONG CHEN2 LI CHEN3 JINGYE LI
Show Less
2 State Key Laboratory of Petroleum Resources and Prospecting, National Engineering Laboratory for Offshore Oil Exploration, China University of Petroleum-Beijing, Beijing 102249, P.R. China.,
3 BGP INC, China National Petroleum Corporation Southwest Geophysical Research Institute, Chengdu 610000, P.R. China.,
JSE 2020, 29(4), 305–326;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, X.Y., Chen, X.H., Chen, L. and Li, J-Y., 2020. Nonlinear prestack inversion using the reflectivity method and quantum particle swarm optimization. Journal of Seismic Exploration, 29: 305-326. The vectorized reflectivity method is an economical and reliable method for solving the elastic wave equation under a one-dimensional assumption. It can obtain the information of full wave field and accurately describe diverse propagation effects of the seismic wave. The inversion method based on the reflectivity method finds suitable inverted parameters by minimizing the error between the synthetic seismograms and observed seismic data. The non-linear inversion problem can be solved by a gradient-based method or a global optimization method. The former relies heavily on the staring model and is prone to fall into a local minima. The global optimization algorithms demand for an accurate and rapid calculation of the forward modeling. The vectorize reflectivity method satisfies these requirements. We introduce and improve the quantum particle swarm optimization algorithm (QPSO), which has significant advantages in global search, into seismic inversion based on the reflectivity method, developing a nove nonlinear prestack inversion method in angle gather domain. The vectorized reflectivity method is able to synthesize seismic records quickly and accurately. Using the QPSO relieves reliance on the initial model. The Cauchy distribution is introduced to combat the possible premature convergence. The benefits of the vectorized reflectivity method and QPSO are combined. We apply the technique to model data and field data, which demonstrates the feasibility and reliability of the new method.

Keywords
prestack inversion
reflectivity method
wave propagation effects
quantum particle swarm optimization
elastic wave equation
References
  1. Akga, I. and Basokur, A.T., 2010. Extraction of structure-based geoelectric models by
  2. hybrid genetic algorithms. Geophysics, 75(1): F15-F22.
  3. Barboza, F.M., Medeiros, W.E. and Santana, J.M.. 2019. A user-driven feedback
  4. approach for 2D direct current resistivity inversion based on particle swarm
  5. optimization. Geophysics, 84(2): E105-E124.
  6. Buland, A., and Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics, 68(1):
  7. 185-198.
  8. Chen, L., 2017. Prestack AVO Inversion Based on the Reflectivity method using
  9. Bayesian theory. China University of Petroleum-Beijing.
  10. Ciucivara, A. and Sen, M.K., 2009. A reflectivity method for laterally varying media.
  11. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 2707-2711.
  12. Cui, X., Gao, J., Zhang, B. and Wang, Z., 2016. Poststack impedance inversion using
  13. improved particle swarm optimization. Expanded Abstr., 86th Ann. Internat. SEG
  14. Mtg., Dallas: 3809-3813.
  15. Dariu, H., Garotta, R. and Granger, P.Y., 2003. Simultaneous inversion of PP and PS
  16. wave AVO/AVA data using simulated annealing. Expanded Abstr., 73rd Ann.
  17. Internat. SEG Mtg, Dallas: 120-123.
  18. Davis, L., 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.
  19. De Jong. K.. 1975. An analvsis of the behavior of a class of genetic adaptive systems. Ph.
  20. D. Thesis, University of Michigan.
  21. Fryer, G.J., 1980. A slowness approach to the reflectivity method of seismogram
  22. synthesis. Geophys. J. Internat., 63: 747-758.
  23. Fuchs, K. and Miiller, G., 1971. Computation of synthetic seismograms with the
  24. reflectivity method and comparison with observations. Geophys. J. Internat., 23:
  25. 417-433.
  26. Garabito, G., 2018. Global optimization strategies for implementing 3D
  27. common-reflection-surface stack using the very fast simulated annealing algorithm:
  28. Application to real land data. Geophysics, 83(4): V253-V261.
  29. Gouveia, W.P. and Scales, J.A., 1998. Bayesian seismic waveform inversion: Parameter
  30. estimation and uncertainty analysis. J. Geophys. Res., Solid Earth, 103(B2):
  31. 2759-2779.
  32. Huang, K.Y., Shen, L.C., Chen, K.J. and Huang, M.C., 2012. Particle swarm
  33. optimization in multilayer perceptron learning for well log data inversion.
  34. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  35. Jia, Y.G., Li, X.F., Zhang, M.G., Li, X.F. and Wang, T.K., 2005. Summarization of
  36. research on seismic wave nonlinear inversion method. J. Disast. Prev. Mitigat.
  37. Engineer., 25: 345-351.
  38. Kennett, B.L.N., 1979. Theoretical reflection seismograms for elastic media. Geophys.
  39. Prosp., 27: 301-321.
  40. Kennett B.L.N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge
  41. University Press, Cambridge.
  42. Li, T. and Mallick, S.. 2013. Prestack waveform inversion of four-component.
  43. two-azimuth surface seismic data for orthorhombic elastic media parameters using
  44. a nondominated sorting genetic algorithm. Expanded Abstr., 83rd Ann. Internat.
  45. SEG Mtg., Houston: 3283-3287.
  46. Li, T. and Mallick, S.. 2014. Prestack waveform inversion of three-component.
  47. two-azimuth surface seismic data for azimuthally dependent anisotropic parameters
  48. using a parallelized nondominated sorting genetic algorithm. Expanded Abstr., 84th
  49. Ann. Internat. SEG Mtg., Denver: 3205-3210.
  50. Liu, H., Li, J., Chen, X., Hou, B. and Chen, L., 2016. Amplitude variation with offset
  51. inversion using the reflectivity method. Geophysics, 81(4): R185-R195.
  52. Liu, W., 2017. The research of pseudo-wells’ construction method using a fast
  53. non-dominated sorting genetic algorithm. China University of Petroleum-Beijing.
  54. Liu, X., Li, J., Chen, X., Guo, K., Li, C., Zhou, L., and Cheng, J., 2018. Stochastic
  55. inversion of facies and reservoir properties based on multi-point geostatistics. J.
  56. Geophys. Engineer., 15: 2455-2468.
  57. Liu, W.. Wang. Y.C.. Li. J-Y.. Liu. X.O. and Xie. W.. 2018. Prestack AVA joint
  58. inversion of PP and PS waves using the vectorized reflectivity method. Appl.
  59. Geophys., 15: 448-465.
  60. Luo, H.M., 2007. Quantum genetic algorithm and its application to inversion of
  61. geophysics. China University of Geosciences.
  62. Ma, Y., Loures, L. and Margrave, G.F., 2004. Seismic modeling with the reflectivity
  63. method. CREWES Research Report, 16-1.
  64. Mallick, S. and Frazer, L.N., 1987. Practical aspects of reflectivity modeling. Geophysics,
  65. 52: 1355-1364.
  66. Mallick, S. and Frazer, L.N., 1990. Computation of synthetic seismograms for stratified
  67. azimuthally anisotropic media. J. Geophys. Res. - Solid Earth, 95(B6): 8513-8526.
  68. Mallick, S. and Adhikari, S., 2015. Amplitude-variation-with-offset and prestack-
  69. waveform inversion: A direct comparison using a real data example from the Rock
  70. Springs Uplift, Wyoming, USA. Geophysics, 80(2): B45-B59.
  71. Miiller, G., 1985. The reflectivity method - a tutorial. J. Geophys., 58: 153-174.
  72. Padhi, A. and Mallick, S., 2013. Accurate estim
  73. Sen, M.K. and Roy, I.G., 2003. Computation of differential seismograms and iteration
  74. adaptive regularization in prestack waveform inversion. Geophysics, 68:
  75. 2026-2039.
  76. Shaw, R. and Srivastava, S., 2007. Particle swarm optimization: A new tool to invert
  77. geophysical data. Geophysics, 72(2): F75-F83.
  78. Sun, J., Feng, B. and Xu, W., 2004. Particle swarm optimization with particles having
  79. quantum behavior. Proc. 2004 Congr. Evolution. Computat., Portland, OR:
  80. 325-331.
  81. Sun, J., Liu, J. and Xu, W., 2007. Using quantum-behaved particle swarm optimization
  82. algorithm to solve non-linear programming problems. Internat. J. Comput.
  83. Mathemat., 84: 261-272.
  84. Van den Bergh, F. and Engelbrecht, A.P., 2002. A new locally convergent particle swarm
  85. optimiser. IEEE Internat. Conf. Systems, Man Cybernet., Tunis: 3-6.
  86. Xu, W. and Sun, J., 2005. Adaptive parameter selection of quantum-behaved particle
  87. swarm optimization on global level. Internat. Conf. Intellig. Comput., Hefei, China:
  88. 420-428.
  89. Yin, C. and Hodges, G., 2007. Simulated annealing for airborne EM inversion.
  90. Geophysics, 72(4): F189-F195.
  91. Zhao, H., Ursin, B. and Amundsen, L., 1994. Frequency-wavenumber elastic inversion of
  92. marine seismic data. Geophysics, 59: 1868-1881.
  93. Zhou, L., Li, J., Chen, X., Liu, X. and Chen, L., 2017. Prestack AVA inversion of exact
  94. Zoeppritz equations based on modified Trivariate Cauchy distribution. J. Appl.
  95. Geophys., 138: 80-90.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing