ARTICLE

Generalization of Kirchhoff reflectivity to go beyond modeling and inversion of first-order reflection data – a theoretical review

JEREMIE MESSUD
Show Less
CGG, 27 avenue Carnot, 91341 Massy Cedex, France,
JSE 2020, 29(5), 477–504;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Messud, J., 2020. Generalization of Kirchhoff reflectivity to go beyond modelling and inversion of first-order reflection data - a theoretical review. Journal of Seismic Exploration, 29: 477-504. I emphasize the connections and differences between Kirchhoff and Born modelling. I seize the opportunity to clarify aspects related to possibly non-smooth propagating media and the linearity approximation on reflectors. I discuss how they lead to a general expression for the conversion of a velocity perturbation into a reflectivity through the “generalized reflectivity' concept. The latter offers opportunities: On FWI approaches that include a reflectivity or least squares migration approaches that can be based on Kirchhoff or Born modelling: to rigorously convert the reflectivity into a velocity perturbation. In the framework of traditional Kirchhoff modelling scheme: to model first-order effects that go beyond first-order reflections (like first-order diffractions). In the framework of traditional Kirchhoff inversion or true amplitude migration, i.e., for the interpretation of seismic-migrated images: to give a basis to interpret by AVA (amplitude versus angle) more information than the amplitudes associated to first-order reflections, for instance the amplitudes of first-order diffractors. Also, it would theoretically allow to go beyond AVA analysis, inverting for the whole seismic image amplitude information (not only amplitude information at peaks) to recover the related velocity model perturbation. This is discussed formally in the article.

Keywords
Reflectivity
migration
diffractions
Kirchhoff
Born
interpretation
References
  1. Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H.
  2. Freeman & Co., San Francisco.
  3. Alferini, M., 2002. Imagerie Sismique en Profondeur de Donnés OBC via la Théorie des
  4. Rais en Milieu Isotrope. Ph.D. thesis, Ecole des Mines de Paris, Paris.
  5. Berkhout, A.J., 1982. Seismic Migration. A: Theoretical Aspects. Elsevier Science
  6. Publishers, Amsterdam.
  7. Beydoun, W.B. and Jin, S.,1994. Born or Kirchhoff migration/inversion: What is the
  8. earth’s point of view? Proc. SPIE 2301, Mathematical Methods in Geophysical
  9. Imaging II, San Diego.
  10. Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem by
  11. inversion of a causal radon transform. J. Mathemat. Phys., 26: 99-108.
  12. Beylkin, G., 1986. Mathematical theory for seismic migration and spatial resolution.
  13. Proc. of Workshop. Blackwell Scientific Publications, Oxford.
  14. Bleistein, N., 1987. On the imaging of reflectors in the earth. Geophysics, 52: 931-942.
  15. Bleistein, N., Cohen, J.K. and Stockwell, J.W., 2001. Mathematics of Multidimensional
  16. Seismic Imaging, Migration, and Inversion. Springer Verlag, New York.
  17. Brandsberg-Dahl, V., de Hoop, M. and Ursin, B., 2003. Focusing in dip and AVA
  18. compensation on scattering angle/azimuth common image gathers. Geophysics, 68:
  19. 232-254.
  20. Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.
  21. Chapman, C.H., 2004. Fundamentals of Seismic Wave Propagation. Cambridge
  22. University Press, Cambridge.
  23. Claerbout, J.F., 1971. Toward a unified theory of reflector mapping. Geophysics, 36:
  24. 467-481.
  25. Claerbout, J.F., 1985. Imaging the Earth’s Interior. Blackwell Science Inc., New York.
  26. Huang, Y., Nammour, R. and Symes, W., 2016. Flexibly preconditioned extended least
  27. squares migration in shot-record domain. Geophysics, 81(5): $299-S315.
  28. Kravtsov, Y.A. and Orlov, Y.I., 1990. Geometrical Optics of Inhomogeneous Media.
  29. Springer Verlag, Berlin.
  30. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations.
  31. Conf. Inverse Scattering, Theory and Applications SIAM, Philadelphia.
  32. Lambaré, G., 2008. Stereotomography. Geophysics, 73(5): VE25-VE34.
  33. Lambaré, G., Virieux, J., Madriaga, R. and Sin, J., 1992. Iterative asymptotic inversion in
  34. the acoustic approximation. Geophysics, 57: 1138-1154.
  35. Luo, Y. and Schuster, G.T., 1991. Wave equation travel time inversion. Geophysics, 56:
  36. 645-653.
  37. Malcolm, A., Ursin, B. and de Hoop, M., 2009. Seismic imaging and illumination with
  38. internal multiples. Geophys. J. Internat., 176: 847-864.
  39. Russell, B.H., 1988. Introduction to seismic inversion methods. Course Note Series No.2.
  40. SEG, Tulsa, OK.
  41. Salomons, B., Kiehn, M., Sheiman, J., Strawn, B. and ten Kroode, F., 2014. High fidelity
  42. imaging with least squares migration. Extended Abstr., 76th EAGE Conf.
  43. Amsterdam.
  44. Stlok, C. and De Hoop, M., 2002. Microlocal analysis of seismic inverse scattering in
  45. anisotropic elastic media. Communicat. Pure Appl. Mathemat., 55: 261-301.
  46. Tarantola, A., 1984. Linearized inversion of seismic reflection data. Geophys. Prosp., 32:
  47. 998-1015.
  48. Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameters
  49. Estimation. Elsevier Science Publishers, Amsterdam.
  50. ten Kroode, A., 2002. Prediction of internal multiples. Wave Motion, 35: 315-338.
  51. ten Kroode, A., Smit, D.-J. and Verdel, A., 1998. A microlocal analysis of migration.
  52. Wave Motion, 28: 149-172.
  53. Ursin, B. and Tygel, M., 1997. Reciprocal volume and surface scattering integrals for
  54. anisotropic elastic media. Wave Motion, 26: 31-42.
  55. Virieux, J. and Lambaré, G., 2015. Theory and observations: Body waves, ray methods,
  56. and finite frequency effects. Treatise on Geophys., Elsevier, 1: 127-155.
  57. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration
  58. geophysics. Geophysics, 74(6): WCC127-WCC152.
  59. Weglein, A., Gasparotto, F., Carvalho, P. and Stolt, R.,1997. An inverse scattering series
  60. method for attenuating multiples in seismic reflection data. Geophysics, 62:
  61. 1975-1989.
  62. Woodward, M. K., Nichols, D., Zdraveva, O., Whitfield, P. and Johns, T., 2008. A
  63. decade of tomography. Geophysics, 73(5): VES-VE11.
  64. Xu, S., Wang, D., Chen, F., Zhang, Y. and Lambaré, G., 2012. Full waveform inversion
  65. for reflected seismic data. Extended Abstr., 74th EAGE Conf., Copenhagen.
  66. Yarman, E., Cheng, X., Osypov, K., Nichols, D. and Protasov, M., 2013. Band-limited
  67. ray tracing. Geophys. Prosp., 61: 1194-1205.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing