ARTICLE

Cooperative full waveform and gravimetric inversion

Raul U. Silva1 Jonas D. De Basabe1 Mrinal K. Sen2 Mario González-Escobar1 Enrique Gómez-Treviño1 Selene Solorza-Calderón3
Show Less
1 Earth Sciences Division, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Baja California, México,
2 Institute for Geophysics, The University of Texas at Austin, TX, U.S.A,
3 Facultad de Ciencias, Universidad Autónoma de Baja California, Baja California, México,
JSE 2020, 29(6), 549–573;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Silva, R.U., De Basabe, J.D., Sen, M.K., Gonzalez-Escobar, M., Gomez-Trevifio, E. and Solorza-Calderén, S., 2020. Cooperative full waveform and gravimetric inversion. Journal of Seismic Exploration, 29: 549-573. There has been an increasing interest in recent years in the inversion of multiple geophysical data sets to obtain a consistent subsurface model for exploration and exploitation purposes. We employ cooperative inversion of gravity and seismic data for estimating a velocity and density model which fits observed data on the surface. This particular combination is motivated by the fact that the horizontal resolution of a model can be resolved by gravity inversion while the vertical resolution can be better estimated from the seismic data. We develop an iterative scheme based on full waveform inversion (FWD and petrophysical relations that minimizes the misfit between the observed and synthetic data measured at the surface for gravimetric stations and seismograms. Our algorithm exploits the benefits of each of the geophysical methods. It uses the adjoint- state method for the computation of the gradient needed for FWI and uses a constrained Conjugate Gradient Least Squares method for gravimetric inversion subject to the discrepancies between the density and the velocity models using petrophysical relationships between these properties. We tested our algorithm on three synthetic models: The first model isa Texas-shaped structure with a high-velocity region beneath 0963-065 1/20/$5.00 © 2020 Geophysical Press Ltd. 550 some horizontal layers with low velocities, the second example consists of a more complex version of the Texas-shaped model adding more heterogeneities and faults with the addition of random noise on the observed data, and the final model is a 3D example of cooperative gravimetric and full waveform inversion. In all the examples, we were able to fit the data and achieve iterative convergence, recovering the interface between layers and the top and shape of the higher-velocity body. The numerical examples demonstrate that the proposed method can be used to successfully combine gravimetric and seismic data sets to obtain a consistent subsurface model without incurring the computational cost of traditional joint-inversion methods.

Keywords
full waveform inversion (FWD
gravimetric inversion
finite differences
References
  1. Alford, R., Kelly, K. and Boore, D.M., 1974. Accuracy of finite-difference modeling of
  2. the acoustic wave equation. Geophysics, 39: 834-842.
  3. Banerjee, B. and Das Gupta, S., 1977. Gravitational attraction of a rectangular
  4. parallelepiped. Geophysics, 42: 1053-1055.
  5. Bhattacharyya, B. and Leu, L.-K., 1977. Spectral analysis of gravity and magnetic
  6. anomalies due to rectangular prismatic bodies. Geophysics, 42: 41-50.
  7. Blakely, RJ., 1996. Potential Theory in Gravity and Magnetic Applications.
  8. Cambridge University Press, Cambridge.
  9. Blom, N., Boehm, C. and Fichtner, A., 2017. Synthetic inversions for density using
  10. seismic and gravity data. Geophys. J. Internat., 209: 1204-1220.
  11. Boulanger, O. and Chouteau, M., 2001. Constraints in 3D gravity inversion. Geophys.
  12. Prosp., 49: 265-280.
  13. Brocher, T.M., 2005. Empirical relations between elastic wavespeeds and density in the
  14. Earth's crust. Bull. Seismol. Soc. Am., 95: 2081-2092.
  15. Cohen, G., 2002. Higher-order Numerical Methods for Transient Wave Equations.
  16. Springer Verlag, Berlin.
  17. Colombo, D. and Rovetta, D., 2018. Coupling strategies in multiparameter geophysical
  18. joint inversion. Geophys. J. Internat., 215: 1171-1184.
  19. Gallardo, L.A. and Meju, M.A., 2003. Characterization of heterogeneous near-surface
  20. materials by joint 2D inversion of DC resistivity and seismic data. Geophys. Res.
  21. Lett., 30: 13.
  22. Gallardo, L.A. and Meju, M.A., 2004. Joint two-dimensional DC resistivity and seismic
  23. travel time inversion with cross-gradients constraints. J. Geophys. Res., Solid
  24. Earth, (1978-2012), 109(B3).
  25. Garcia-Abdeslem, J., 2005. The gravitational attraction of a right rectangular prism with
  26. density varying with depth following a cubic polynomial. Geophysics, 70(6): J39-
  27. J42.
  28. Gardner, G., Gardner, L. and Gregory, A., 1974. Formation velocity and density - The
  29. diagnostic basics for stratigraphic traps. Geophysics, 39: 770-780.
  30. Hansen, P.C., 1992. Analysis of discrete ill-posed problems by means of the L-curve.
  31. SIAM review, 34: 561-580.
  32. Johnson, L.R. and Litehiser, J.J., 1972. A method for computing the gravitational
  33. attraction of three-dimensional bodies in a spherical or ellipsoidal Earth. J.
  34. Geophys. Res., 77: 6999-7009.
  35. Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
  36. three-dimensional seismic wave propagation. Geophys. J. Internat., 139: 806-822.
  37. Lees, J.M. and Van Decar, J., 1991. Seismic tomography constrained by Bouguer gravity
  38. anomalies: Applications in western Washington. Pure Appl. Geophys., 135: 31-
  39. Lin, F.-C., Schmandt, B. and Tsai, V.C., 2012. Joint inversion of Rayleigh wave phase
  40. velocity and ellipticity using USArray: Constraining velocity and density
  41. structure in the upper crust. Geophys. Res. Lett., 39: (12).
  42. Lin, W. and Zhdanov, M., 2017. Joint inversion of seismic and gravity gradiometry data
  43. using Gramian constraints. Expanded Abstr., 87th Ann. Internat. SEG Mtg.,
  44. Houston: 1734-1738.
  45. Li, Y. and Oldenburg, D.W., 1998. 3-D inversion of gravity data. Geophysics, 63: 109-
  46. Marfurt, K.J., 1984. Accuracy of finite-difference and finite-element modeling of the
  47. scalar and elastic wave equations. Geophysics, 49: 533-549.
  48. Martin, R., Chevrot, S., Komatitsch, D., Seoane, L., Spangenberg, H., Wang, Y.,
  49. Dufréchou, G., Bonvalot, S. and Bruinsma, S., 2017. A high-order 3-D spectral-
  50. element method for the forward modelling and inversion of gravimetric data -
  51. Application to the western Pyrenees. Geophys. J. Internat., 209: 406-424.
  52. Menichetti, V. and Guillen, A., 1983. Simultaneous interactive magnetic and gravity
  53. inversion. Geophys. Prosp., 31: 929-944.
  54. Nagy, D., 1966. The gravitational attraction of a right rectangular prism. Geophysics,
  55. 31: 362-371.
  56. Paasche, H. and Tronicke, J., 2007. Cooperative inversion of 2D geophysical data sets: A
  57. zonal approach based on fuzzy c-means cluster analysis. Geophysics, 72(3): A35-
  58. A39.
  59. Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a
  60. functional with geophysical applications. Geophys. J. Internat., 167: 495-503.
  61. Romero, A. and Gallardo, L.A., 2015. Borehole constrained inversion of geophysical data
  62. based on fuzzy clustering. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New
  63. Orleans: 1792-1796.
  64. Roy, L., Sen, M.K, McIntosh, K., Stoffa, P.L. and Nakamura, Y., 2005. Joint inversion of
  65. first arrival seismic travel-time and gravity data. J. Geophys. Engineer., 2: 277.
  66. Sen, M.K. and Stoffa, P.L., 2013. Global Optimization Methods in Geophysical
  67. Inversion. Cambridge University Press, Cambridge
  68. Sheriff, RE. and Geldart, L.P., 1995. Exploration Seismology. Cambridge University
  69. Press, Cambridge.
  70. Talwani, M., 1965. Computation with the help of a digital computer of magnetic
  71. anomalies caused by bodies of arbitrary shape. Geophysics, 30: 797-817.
  72. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.
  73. Geophysics, 49: 1259-1266.
  74. Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
  75. Geophysics, 51: 1893-1903.
  76. Tondi, R., Achauer, U., Landes, M., Davi, R. and Besutiu, L, 2009. Unveiling seismic
  77. and density structure beneath the Vrancea seismogenic zone, Romania. J.
  78. Geophys. Res.: Solid Earth, 114: B11.
  79. Vigh, D. and Starr, E.W., 2008. 3D prestack plane-wave, full-waveform inversion.
  80. Geophysics, 73(5). VE135-VE144.
  81. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-
  82. difference method. Geophysics, 51: 889-901.
  83. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration
  84. geophysics. Geophysics, 74(6): WCC1-WCC26.
  85. Vozoff, K. and Jupp, D., 1975. Joint inversion of geophysical data. Geophys. J. Internat.,
  86. 42: 977-991.
  87. Werner, R.A., 1994. The gravitational potential of a homogeneous polyhedron or don't
  88. cut corners. Celest. Mechan. Dynamic. Astron., 59: 253-278.
  89. Zeyen, H. and Pous, J., 1993. 3-D joint inversion of magnetic and gravimetric data with
  90. a-priori information. Geophys. J. Internat., 112: 244-256.
  91. Zhdanov, M.S., Ellis, R. and Mukherjee, S., 2004. Three-dimensional regularized
  92. focusing inversion of gravity gradient tensor component data. Geophysics, 69:
  93. 925-937.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing