Rays in constant-gradient velocity fields: a tutorial

Hertweck, T., 2020. Rays in constant-gradient velocity fields: a tutorial. Journal of Seismic Exploration, 29: 527-548. Ray theory is a high-frequency approximation to the wave equation and can be used to calculate seismic wavefields in 3D inhomogeneous Earth models. In general, the corresponding raytracing equations have to be solved numerically. However, for certain simplified models such as, for instance, an Earth described by a constant-gradient velocity field, the solutions of the raytracing system can be obtained analytically. In this tutorial the fundamental concepts are explained, the most important equations and their solution are presented, and examples highlighting the analytical nature of describing rays in constant-gradient velocity fields are shown. This tutorial is meant to complement text books where for space reasons detailed mathematical derivations are often neglected.
- Aki, K. and Richards, P.G., 2002. Quantitative Seismology. University Science Books,
- San Francisco.
- Baig, A.M., Hron, F. and Schmitt, D.R., 2001. Modelling the effect of seismic velocity
- gradients on the change in geometrical spreading across a boundary. Geophys. J.
- Internat., 146: 679-690.
- Bleistein, N., 1984. Mathematical Methods for Wave Phenomena. Academic Press, New
- York.
- Bronshtein, I.N., Semendyayev, K.A., Musiol, G. and Muehlig, H., 2015. Handbook of
- Mathematics. Springer Verlag, Berlin.
- Casey, J., 1886, A sequel to the first six books of the Elements of Euclid, containing an
- easy introduction to modern geometry, with numerous examples. Hodges, Figgis
- & Co., Dublin.
- Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.
- Conrad, V., 1922. Dynamische Geologie. B.G. Teubner, Vol.6, Encyklopadie der
- Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen.
- Kim, W. and Lee, J.M., 1997. The equation and properties of a ray in a linearly varying
- velocity field. Geosci. J., 1: 32-36.
- Michaels, P., 1977. Seismic raypath migration with the pocket calculator. Geophysics,
- 42: 1056-1063.
- Popov, M.M., 2002. Ray Theory and Gaussian Beam Method for Geophysicists. Editora
- da Universidade Federal da Bahia.
- Schneider, W.A., 1978. Integral formulation for migration in two and three dimensions.
- Geophysics, 43: 49-76.
- Sethian, J.A. and Popovici, A.M., 1999. Three-dimensional traveltime computation using
- the fast marching method. Geophysics, 64: 516-523.
- Shearer, P.M., 2009. Introduction to Seismology. Cambridge University Press,
- Cambridge.
- Sheriff, R-E., 2002. Encyclopedic Dictionary of Applied Geophysics. SEG, Tulsa, OK.
- Slawinski, R.A. and Slawinski, M.A., 1999. On raytracing in constant velocity-gradient
- media: calculus approach. Can. J. Explor. Geophys., 35: 24-27.
- Slotnick, M.M., 1936. On seismic computations, with applications, I. Geophysics, 1: 9-
- Van Melle, F.A., 1948. Wave-front circles for a linear increase of velocity with depth.
- Geophysics, 13: 158-162.
- Yilmaz, O., 2001. Seismic Data Analysis. SEG, Tulsa, OK.