ARTICLE

Rays in constant-gradient velocity fields: a tutorial

THOMAS HERTWECK
Show Less
Karlsruhe Institute of Technology (KIT), Geophysical Institute, Hertzstraße 16, 76187 Karlsruhe, Germany.,
JSE 2020, 29(6), 527–548;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Hertweck, T., 2020. Rays in constant-gradient velocity fields: a tutorial. Journal of Seismic Exploration, 29: 527-548. Ray theory is a high-frequency approximation to the wave equation and can be used to calculate seismic wavefields in 3D inhomogeneous Earth models. In general, the corresponding raytracing equations have to be solved numerically. However, for certain simplified models such as, for instance, an Earth described by a constant-gradient velocity field, the solutions of the raytracing system can be obtained analytically. In this tutorial the fundamental concepts are explained, the most important equations and their solution are presented, and examples highlighting the analytical nature of describing rays in constant-gradient velocity fields are shown. This tutorial is meant to complement text books where for space reasons detailed mathematical derivations are often neglected.

Keywords
ray theory
tutorial
eikonal
ray
slowness
wavefront
traveltime
References
  1. Aki, K. and Richards, P.G., 2002. Quantitative Seismology. University Science Books,
  2. San Francisco.
  3. Baig, A.M., Hron, F. and Schmitt, D.R., 2001. Modelling the effect of seismic velocity
  4. gradients on the change in geometrical spreading across a boundary. Geophys. J.
  5. Internat., 146: 679-690.
  6. Bleistein, N., 1984. Mathematical Methods for Wave Phenomena. Academic Press, New
  7. York.
  8. Bronshtein, I.N., Semendyayev, K.A., Musiol, G. and Muehlig, H., 2015. Handbook of
  9. Mathematics. Springer Verlag, Berlin.
  10. Casey, J., 1886, A sequel to the first six books of the Elements of Euclid, containing an
  11. easy introduction to modern geometry, with numerous examples. Hodges, Figgis
  12. & Co., Dublin.
  13. Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.
  14. Conrad, V., 1922. Dynamische Geologie. B.G. Teubner, Vol.6, Encyklopadie der
  15. Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen.
  16. Kim, W. and Lee, J.M., 1997. The equation and properties of a ray in a linearly varying
  17. velocity field. Geosci. J., 1: 32-36.
  18. Michaels, P., 1977. Seismic raypath migration with the pocket calculator. Geophysics,
  19. 42: 1056-1063.
  20. Popov, M.M., 2002. Ray Theory and Gaussian Beam Method for Geophysicists. Editora
  21. da Universidade Federal da Bahia.
  22. Schneider, W.A., 1978. Integral formulation for migration in two and three dimensions.
  23. Geophysics, 43: 49-76.
  24. Sethian, J.A. and Popovici, A.M., 1999. Three-dimensional traveltime computation using
  25. the fast marching method. Geophysics, 64: 516-523.
  26. Shearer, P.M., 2009. Introduction to Seismology. Cambridge University Press,
  27. Cambridge.
  28. Sheriff, R-E., 2002. Encyclopedic Dictionary of Applied Geophysics. SEG, Tulsa, OK.
  29. Slawinski, R.A. and Slawinski, M.A., 1999. On raytracing in constant velocity-gradient
  30. media: calculus approach. Can. J. Explor. Geophys., 35: 24-27.
  31. Slotnick, M.M., 1936. On seismic computations, with applications, I. Geophysics, 1: 9-
  32. Van Melle, F.A., 1948. Wave-front circles for a linear increase of velocity with depth.
  33. Geophysics, 13: 158-162.
  34. Yilmaz, O., 2001. Seismic Data Analysis. SEG, Tulsa, OK.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing