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ABSTRACT 
The anisotropic effects in real earth media can induce waveform distortion on seismic wave propagation. 
Neglecting these effects in seismic imaging processing can lead to a degradation in imaging resolution. 
Therefore, starting from the exact P-wave dispersion relation, we derive a pure acoustic wave equation for 
tilted transversely isotropic (TTI) media to accurately characterize the anisotropic effects. In contrast to the 
coupled pseudo-acoustic TTI wave equation, our new pure acoustic TTI wave equation generates a noise-free 
wavefields and remains stable for anisotropic parameters (ε < δ). The newly derived pure acoustic TTI wave 
equation accurately simulates the P-wave kinematic features, as demonstrated through theoretical analysis. 
Additionally, building on the proposed wave equation, we formulate a finite-difference operator and obtain a 
pure acoustic TTI wave equation that can be solved by finite-difference (FD) method. Numerical tests illustrate 
that the proposed FD-solvable pure acoustic TTI wave equation is highly efficient in wavefield simulation. 
Finally, based on the newly derived FD-solvable pure acoustic TTI wave equation, we implement TTI reverse 
time migration (TTI RTM). Numerical examples demonstrate the efficacy of the proposed TTI RTM scheme 
in correcting for anisotropic effects.
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INTRODUCTION

The anisotropy effects of the real earth media are widely existed in underground, 
as evidenced through rock experiments and physical measurements (Thomsen, 
1986; Tsvankin, 1996; Alkhalifah, 1998). These effects induce waveform 
distortion in the propagation of seismic wave, inevitably resulting in degraded 
imaging quality if their effects are disregarded. To obtain high-quality imaging 
results in anisotropic media, it is necessary to consider the effects of anisotropy 
and migrate their effects efficiently in imaging process.

Although anisotropic full elastic wave equation can accurately describe the 
propagation of seismic wave in anisotropic medium, it is difficult to be applied 
in petroleum industry due to its high computational cost and complexity 
(Cheng and Fomel, 2014; Zhu, 2017). Therefore, most exploration methods 
utilize P-wave only and simplify the full elastic wave equation to anisotropic 
acoustic equation for wavefield modeling and reverse time migration (RTM) 
(Li and Zhu, 2018; Zhu et al.,2018). Following that, a lot of approximations and 
assumptions (e.g., small angle approximation, elliptical approximation, weak 
anisotropy approximation and acoustic approximation) have been introduced to 
obtain qP wave equations (Fletcher et al., 2009; Zhang et al., 2011; Mu et al., 
2020) over the years. Acoustic approximation introduced by Alkhalifah (1998) 
plays a crucial role in the derivation of pure qP wave equations. According to 
acoustic approximation, which states that the S-wave velocity along the axis 
of symmetry is zero. In comparison to aforementioned methods, the merits 
of acoustic approximation are reasonable accuracy and low computational 
cost. Afterward, Alkhalifah (2000) derived a coupled pseudo-acoustic wave 
equation using the acoustic approximation. However, this equation involves 
fourth-order partial derivatives in time-space domain, resulting in a large 
amount of computational resources for numerical simulation. To address these 
issues, some scholars simplified the fourth-order equations into second-order 
partial derivations utilizing an auxiliary wavefield (Zhou et al., 2006a; Fletcher 
et al., 2009; Flower et al., 2010). The wavefields simulated by coupled pseudo-
acoustic wave equations can accurately describe the kinematic accuracy of 
P-wave. However, the aforementioned coupled pseudo acoustic wave equations 
are unstable when anisotropy parameter ε < δ. Subsequently, several stable 
coupled pseudo-acoustic wave equations (Duveneck and Bark, 2011; Zhang 
et al., 2011) are derived for wavefield simulation. Nevertheless, wavefields 
simulated by these coupled pseudo-acoustic anisotropic equations still contain 
undesired S-wave artifacts, due to the acoustic approximation only guarantees 
the S-wave velocity to be zero along the symmetry axis and not in all directions 
(Grechka et al., 2004).

To overcome this shortcoming, researchers have proposed pure acoustic 
wave equations for simulating wavefields in anisotropic media. Chu et al. 
(2011), and Zhan et al. (2012) independently used the first-order Taylor-series 
expansion to approximate the phase velocity formula and derived the pure 
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acoustic wave equations with a similar expression. Compared to the coupled 
pseudo acoustic TTI wave equations, these pure acoustic TTI wave equations 
cannot accurately simulate kinematic behavior of P-wave. Subsequently, Chu 
et al. (2013) employed the high-order Taylor series expansion to achieve the 
high accuracy qP-wave simulation, while leads to the huge computational cost. 
Recently, some high-precision pure acoustic anisotropic wave equations have 
been developed for wavefield simulation. Schleicher and Costa (2016) derived 
the precise pure acoustic wave equations that are effective even for strongly 
anisotropic media. Li and Zhu (2018) and Mu et al. (2020a) independently 
derived the pure qP-wave equation with high accuracy in TTI media for 
wavefield simulation and RTM. In addition, by setting the S-wave to zero at all 
direction, Xu et al. (2020) proposed a new acoustic approximation and derived 
a pure qP-wave dispersion relation. In addition, based on the work of Xu et al. 
(2020), Mao et al. (2023) also developed an accurate pure qP-wave equation 
in attenuating tilted transversely isotropic media to characterize the attenuation 
and anisotropy of seismic waves. Li and Stovas (2021) introduced a decoupled 
approximation and derived a pure qP-wave equation in TTI media that can 
eliminate SV-energy completely. These pure acoustic TTI wave equations are 
critical for wavefield simulation, imaging and inversion in anisotropic media.

In recent decades, the numerical simulation of pure qP anisotropic wave 
equations has attracted great attention. Fomel et al. (2013) and Song et al. 
(2013) developed the low-rank approximation method to solve Alkhalifah’s 
(2000) dispersion relation formula, successfully achieving the simulation of 
pure qP wavefields. The low-rank approximation, known for its convenience in 
solving mixed space-wavenumber operators, has found widespread application 
in seismic wave simulation (Cheng and Fomel, 2014; Cheng et al., 2016; Wu and 
Alkhalifah, 2014; Sun et al., 2016; Zhang et al., 2019). However, this method 
exhibits computational inefficiency in simulations involving complex media due 
to its limitation to model complexity. Zhan et al. (2013) introduced the finite-
difference and pseudo-spectral method to solve the pure qP-wave equation. 
Recently, Xu and Zhou (2014) separated the original pseudo-differential 
operator into two numerical solvable operators: a differential operator and a 
scalar operator, then successfully realized finite-difference simulation of pure 
qP-waves (Liang et al., 2023). Additionally, the local spatial operators are 
used proposed to simulate seismic wave propagation in VTI and TTI media 
(Nikonenko and Charara, 2021, 2023). The pure acoustic TTI wave equation 
has significantly enhanced computational efficiency when simulated through 
finite-difference methods.

In this paper, starting from the exact pure P-wave phase velocity formula 
and inspired by the work of Xu and Zhou (2014), we derive a pure acoustic 
TTI wave equation that can be solved by the finite-difference (FD) method. 
Our new wave equation can accurately simulate the kinematic behavior of 
P-wave, as illustrated by the theoretical analysis. In addition, in comparison 
to the coupled pseudo acoustic TTI wave equation, the wavefields simulated 
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by the proposed FD solvable pure acoustic TTI wave equation free of S-wave 
artifacts and is stable when anisotropy parameter ε < δ. Numerical tests show 
that the newly derived wave equation can produce highly efficient wavefields. 
Finally, we employ our new FD solvable pure acoustic TTI wave equation 
as forward engine to implement TTI RTM. Numerical examples demonstrate 
that the proposed TTI RTM can effectively correct for anisotropic effects and 
provide high-quality imaging profiles in anisotropic media.

This paper is organized as follows: First, we derive a new pure acoustic TTI 
wave equation that can be solved by the finite-difference method. The accuracy 
and computational efficiency of the newly derived wave equation is verified 
through several numerical tests. Subsequently, we apply the proposed wave 
equation to implement TTI RTM. Finally, numerical examples are used to 
demonstrate the effectiveness of the proposed TTI RTM.

THEORY

Derivation of the finite-difference solvable pure qP-wave equation

We start from the exact dispersion formula for vertical transverse isotropic 
(VTI) media (), expressed as 

( ) ( )2 2 2 2
0 0

1 1 2 sin ,
2P p sV v v Xφ ε φ = + + +                    (1)

( ) ( )2 2 2 2
0 0

1 1 2 sin ,
2sv p sV v v Xφ ε φ = + + −                     (2)

φ
            (3)

where φ  denotes the phase angle, ε and δ are anisotropic parameters 
(Thomsen, 1986), respectively. According to equation (1), Alkhalifah (1998) 
set the 0sv to 0 (i.e., acoustic assumption) to reduce the number of required 
parameters, resulting in pure qP-wave dispersion relation. However, the coupled 
pure qP-wave equations derived from Alkhalifah’s (1998) dispersion relation 
suffer from q-SV artifacts and are only applicable when ε δ> . Therefore, it is 
necessary to develop stable and accurate pure qP-wave equations to address the 
above-mentioned issues. 

Based on equation (2), we define a auxiliary function:

( )2 2 2 2 2
0 2 sin 2 sin cos .sv pV vφ ε φ δ φ φ = +                 (4)

By substituting this expression of ( )2
svV φ  into equation (2), 2

0sv  can be 
represented as follows:

( ) ( ) ( )
( )

2 2
02 2 2 2

0 2
4 2 2

2
0

2 sin cos ,
1 2 sin 2 sin cos

p SV
s SV

SV

p

v V
v V

V
v

φ
φ ε δ φ φ

φ
ε φ δ φ φ

−
= − −

+ + −
               (5)



5

According to expressions of ( )2
svV φ  and 2

0sv , the equation (1) can be 
approximated as 

( ) ( ) ( )
2 2 2

2 2 2 2 2 2
0 0 2 2

1 2 sin 2 sin cos1 2 sin 2 sin cos .
1 2 sin cosP p pV v v ε φ δ φ φφ ε φ ε δ φ φ

ε φ φ
− −

≈ + − −
−

       (6)

Because 2 22 sin cosε φ φ  and 2 22 sin cosδ φ φ  is small relative to 1, for most case. 
Many scholars neglect these terms, we set the trigonometric factor 2sin φ  and 

2cos φ  to its average value of 0.5 instead of setting them to zero (Huang et al., 
2023). As a result, equation (5) can be approximated as

( ) ( ) ( ) ( )2 2 2 2 2 2 2
0 01 2 sin 2 sin cos 1 0.5 2 sin .

1 0.5P p pV v v
ε δ

φ ε φ φ φ δ ε φ
ε

−
 ≈ + − − − −

               (7)

Different from acoustic approximation, the above approximation avoids such 
coupled SV-wave artifacts. In addition, the relationship between wavenumber 
and phase angle can be given as 

( ) ( )sin / , cos / .x p z pk V k Vω φ φ ω φ φ= =                  (8)

Where xk and zk are the wavenumbers in the horizontal and vertical directions, 
and ω  is angular frequency, respectively. Substituting eq. (7) into eq. (6), eq. 
(6) can be written as

( )
( )

( )
2

02 2 2 2 2 4 2 2 4
0 0 22 2

2
1 2 2 ,p

p x p z x z x z

x z

v
v k v k k k k k

k k

η
ω ε σ ε σ = + + − − + 

+
                (9)

( ) ,
1 0.5
ε δ

η
ε

−
=

−
                   (10)

( )1 0.5 .σ δ= −                    (11)

The transformation relations between the time-space domain and frequency-
wavenumber domain can be shown as follows:

/ , / , / .x zi t ik x ik zω ↔ ∂ ∂ ↔ ∂ ∂ ↔ ∂ ∂                  
(12)

Based on equation (12), multiplying both sides of equation (9) with the 
wavefields in wavenumber domain ( ), , ,x y zp k k kω , we can obtain the time-space 
pure acoustic VTI wave equation as follows:

( ) ( ) ( )
2 2 2 6 6

22 2 2 2 4 2 4 22 2
0

2 2

1 21 2 1 0.5 2 1 0.5
p

p p p p p s
v t x z x z x z

x z

ηε δ ε δ
 ∂ ∂ ∂ ∂ ∂

= + + − − − + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∂ ∂
+ ∂ ∂ 

，
              (13)

where s  denotes the source function. Equation (13) can be conveniently 
simulated by pseudo-spectral (PS) method and hybrid finite-difference/
pseudo-spectral (HFDPS) method. However, PS method and HFDPS method 
require uneconomic Fast Fourier transform (FFT) and inverse FFT, making 
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it computationally inefficient. To solve pure qP-wave equation efficiently, 
we derive a FD solvable pure qP-wave equation in the following derivation. 
According to Xu and Zhou (2014), we construct an operator as follows:

2 2

4 2 2 4

2 .
2

x z
k

x x z z

k kS
k k k k

η−
=

+ +            
           (14)

Substituting the operator kS  into equation (9), equation (9) becomes 

( )( ) ( )( )2 2 2 2 2 2 2
0 01 2 2 .p x z p k x zv k k v S k kω ε σ ε σ= + + + − +              (15)

By multiplying equation (16) with the wavefield ( ), ,x zp k kω  in the in the 
Fourier domain and transforming it into time-space domain, we can obtain the 
following pure qP-wave equation in VTI media:

( ) ( )( ) ( )
2 2 2

2 2
0 02 2 21 2 2 1 .p k p k

p p pv S v S
t x z

ε σ ε σ∂ ∂ ∂
= + + − + +

∂ ∂ ∂
            (16)

According to Zhan et al. (2012), the relationship between VTI and TTI media 
can be expressed as

,x x

z
z

k kcos sin
sin cos kk

θ θ
θ θ

∧

∧

  −     =           

               (17)

2 2 2 2ˆ̂ ,x z x zk k k k+ = +                    (18)

where θ  is the tilt angle. Substituting equations (17) and (18) into equation 
(15), the TTI dispersion relation can be expressed as 

( )( ) ( )
( ) ( )( ) ( )( )

2 2 2 2 2 2 2 2 2 2 2
0 0

2 ' 2 2 2 2 2 2 2 2
0

1 2 cos 2 sin cos sin sin 2 sin cos cos

2 cos 2 sin cos sin sin 2 sin cos cos ,

p x x z z p x x z z

p k x x z z x x z z

v k k k k v k k k k

v S k k k k k k k k

ω ε θ θ θ θ θ θ θ θ

σ ε θ θ θ θ σ θ θ θ θ

= + − + + + + +

− − + + + +
(19)

( )( )
( )

2 2 2 2 2 2 2 2
'

22 2

2 cos 2 sin cos sin sin 2 sin cos cos
.x x z z x x z z

k

x z

k k k k k k k k
S

k k

η θ θ θ θ θ θ θ θ− − + + +
=

+
       (20)

As per Liang (2023), The propagation direction is denoted as 
( ) ( ), ,x zn n sin cosθ θ= =n , which can represent the phase direction of wave 

propagation. The relation between k  and θ  is 

, ,x z
x z

k ksin n cos n
k k

θ θ= = = =                  (21)

the unit vector n  is rewritten as

( ), , .x z
x z

k kn n
k k k

 = = = = 
 

k kn
k

                 (22)

Substituting equation (23) into (14), equation (14) becomes 
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( ) ( )( )

2 2

2 2

2 22 2 22

2
2. .

x z

x z
k

x x zz

k k
n nk kS

k n nk
k k

η
η

   −    − ⋅  = =
  +   +       

             (23)

The asymptotic form of (23) in space is proposed by Xu et al (2014), that can 
be expressed as

,x z x z
p p p pP P e e e e
x z x z
∂ ∂ ∂ ∂   ∇ ∇ = + +   ∂ ∂ ∂ ∂   

n =
  

                   (24)

xn  and zn  are rewritten as 

2 2 2 2
, .x z

p p
x zn n

p p p p
x z x z

∂ ∂
∂ ∂= =

∂ ∂ ∂ ∂       + +       ∂ ∂ ∂ ∂       

               (25)

Substituting equation (26) into (24), the operator can be expressed as 
2 2

22 2

2
.k

p p
x zS

p p
x z

η ∂ ∂   −    ∂ ∂   ≈
 ∂ ∂   +     ∂ ∂    

                 (26)

Finally, the time-space domain pure acoustic TTI wave equation can be 
written as

( ) ( )( )( ) ( ) ( ) ( )( )( )
2 2 2 2

2 2 2 2 ' ' 2 2 ' 2 2
2 2 2 2

0

1 1 2 cos sin 2 cos sin 2 sin 2 1 1 2 sin cos 2 sin cos .k k k
p

p p p pS S S
v t x x z z

ε θ θ σ ε θ σ θ ε θ ε θ θ σ ε θ σ θ∂ ∂ ∂ ∂
= + + + − + − − + + + + − +

∂ ∂ ∂ ∂ ∂

( ) ( )( )( ) ( ) ( ) ( )( )( )
2 2 2 2

2 2 2 2 ' ' 2 2 ' 2 2
2 2 2 2

0

1 1 2 cos sin 2 cos sin 2 sin 2 1 1 2 sin cos 2 sin cos .k k k
p

p p p pS S S
v t x x z z

ε θ θ σ ε θ σ θ ε θ ε θ θ σ ε θ σ θ∂ ∂ ∂ ∂
= + + + − + − − + + + + − +

∂ ∂ ∂ ∂ ∂
                     (27)

Accuracy analysis of the proposed wave equation (9)

Theoretical analysis is employed in this case to evaluate the accuracy of the 
proposed wave equation. The phase velocity curve comparisons between the 
exact phase velocity formula, the acoustic approximate formula, the proposed 
approximated formula, and Zhan et al.’s (2012) approximated formula are 
generated, as shown in Fig. 1. In order to evaluate the accuracy of the eq.9, 
we select four groups of typical parameters for accuracy analysis, as shown in 
Table 1.

 Figure 1 describes the phase velocity curves of different formulas. The exact 
phase velocity formula is suitable for accessing the accuracy of the anisotropic 
acoustic equations. As shown in Figure 1, we can observe that our new wave 
equation is in better agreement with the exact phase velocity formula than that 
of Zhan et al.’s (2012) equation. This result indicates that the approximation 
we adopted is appropriate. In the following, we imply that the efficiency of the 
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proposed acoustic wave equation simulated by FD method is higher than the 
previous pure acoustic wave equations. 

Table1. The parameters are used to generate the phase velocity curves.

Model type (m/s)
Ⅰ 2500 0.3 0.1
Ⅱ 2500 0.1 0.3
Ⅲ 2500 0.4 0.05
Ⅳ 2500 0.1 -0.1

Figure 1. The phase velocity of P-wave using different anisotropy parameters. The black 
solid lines, blue dashed lines, red dashed lines, and green dashed lines denote the exact 
phase velocity formula of P-wave, Zhan et al.’s (2012) approximated formula, proposed 
approximated formula, and acoustic approximated formula, respectively. The model 
parameters from Fig. 1a-d are the sets of Ⅰ-Ⅳ in Table 1.

Accuracy analysis of the proposed wave equation (21)

To verify the accuracy of our proposed FD-solvable wave equation in wavefield 
simulation, we designed a TTI homogeneous model. The computational 
domain is 601  × 601 with the grid spacing of 10m. A Ricker wavelet with the 
peak frequency of 25 Hz is used as source function, which located at (3005 m, 
3005 m), and the time step is 0.001 s. Because the coupled pseudo-acoustic 
TTI wave equations are derived under pseudo-acoustic assumption can yield 
good kinematic approximation (Mu et al., 2020), we choose Duveneck et al.’s 
(2008) coupled pseudo-acoustic wave equation as reference for evaluating the 
accuracy of our equation. The PS method is used to solved the proposed wave 
equation in this part.

Figure 2 shows the wavefield snapshots at 1.0 s generated by Duveneck et 
al.’s (2008) coupled pseudo-acoustic TTI wave equation, Zhan et al.’s (2012) 
equation, and our newly proposed equation, respectively. In Figure 2, we can 
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observe that the wavefields simulated by the coupled pseudo-acoustic TTI wave 
equation produce the S-wave artifacts and become unstable when anisotropic 
parameters ε δ< . However, the wavefields calculated by the proposed pure-
acoustic TTI wave equation are noise-free and numerical stable. 

 Then, to verify the accuracy of the proposed wave equation, several traces 
extracted from Figure 2 at depth of 1010m and 4010m are plotted in Figure 3. 
As indicated in Figure 3, the proposed wave equation is in better match with the 
exact dispersion relation than that of Zhan et al.’s (2012) wave equation, which 
demonstrate the newly derived wave equation has higher accuracy than Zhan et 
al.’s (2012) pure acoustic wave equation. 

Figure 2 The snapshots of homogeneous model. (a) 0.35ε = , 0.1δ = , 45θ = ° , (b) 0.1ε =
, 0.35δ = , 45θ = ° , (c) 0.35ε = , 0.1δ = , 45θ = ° , (d) 0.1ε = , 0.35δ = , 45θ = ° , (e)

0.35ε = , 0.1δ = , 45θ = ° , (f) 0.1ε = , 0.35δ = , 45θ = ° .
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Figure 3. Comparison of traces at two vertical distances: (a) 1010 m, (b) 4010 m 

Accuracy analysis of the proposed FD-solvable wave equation (27)

In this case, in order to validate the accuracy of the result solved by FD 
method, a homogenous TTI model is to illustrate the simulation accuracy of 
FD method for solving TTI pure acoustic equation (equation 27). The reference 
result is generated by the PS method. 

The computational domain is 3010 m × 3010 m with a spatial step of 10m. A 
Ricker wavelet with the dominated frequency of 20 Hz is used as source function 
located at (1505 m, 1505 m), the time step is 0.001 s. The velocity of P-wave 
is 2500m/s, and we set the anisotropy parameters as 0.24 0.18 45 .ε δ θ °= = =，，  
Figure 4 shows the wavefield snapshots simulated by the PS method and the FD 
method. Subsequently, two single-traces are extracted from Figure 4 at distance 
of x= 1.0 km and 2.5 km for clear comparison are depicted in Figure 5. As 
shown in Figure 5, this result demonstrates that the wavefield generated by the 
FD method can well preserve the phase (i.e., kinematics feature) of wavefield, 
and cannot remain the amplitude (i.e., dynamics feature) of the wavefield well. 
It is obvious that the two traces match each other well, which demonstrates that 
the accuracy of the proposed FD method is validated.

Figure 4 Snapshots of anisotropic model. (a) simulated by PS method (
0.24, 0.18, 45ε δ θ= = =  ). (b) simulated by FD method ( 0.24, 0.18, 45ε δ θ= = =  ).
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Figure 5 Comparison of traces at lateral distance: 1010 m and 2510m. The 
traces extracted from Figure 4a are represented by the solid blue line, the traces 
extracted from Figure 4b are represented by the dashed red line.

Computational efficiency analysis of the proposed FD-solvable wave equation

 In this case, to illustrate the efficiency of the proposed FD-solvable equation, 
we provide the calculating time comparison between different propagation time 
under different simulation method, as shown in Table 2. The parameters are 

2500pv = m/s, 0.3ε = , 0.1δ = , 45θ °= . A Ricker wavelet with the peak frequency 
of 25 Hz is used as source function. 

Table 2 shows the calculation time of different propagation time under 
different simulation method. It is evident that the proposed equation simulated 
by FD method exhibits shorter calculation time than the other under the 
same propagation time. This result from Table 2 suggests that the proposed 
FD-solvable equation is more computationally efficient than the equation 
simulated by PS method. Based on this feature, our wave equation also has 
great application potential in 3D case due to its high computational efficiency. 
The numerical tests are performed on the Matlab software platform, utilizing a 
computer equipped with an Intel Core i5-10505@3.20 GHz processor, 8 GB of 
RAM, and a 1 TB/7200 rpm hard disk.
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Table 2. Running time for simulating a wavefield for a homogeneous VTI model with 
different propagation times.

Homogeneous VTI 
model

Propagation 
time (s)

PS running time 
(s)

  HFDPS running 
time (s)

FD running time 
(s)

Running time (s) 1s 943.357883 365.425422 84.378289

2s
3s

1985.280156
2941.558762

717.395381
1069.563886

175.149457
261.907284

Note that the compute platform is matlab software

NUMERICAL EXAMPLE

In this section, we perform RTM tasks in the Hess TTI model and Marmousi 
TTI model to demonstrate the feasibility and effectiveness of the anisotropic 
TTI RTM. We used the sponge boundary to absorb reflections.

Modified Hess TTI model

To further verify the feasibility of the proposed algorithm, we implement the 
anisotropic RTM in the Hess TTI model. The model parameters of Hess TTI 
model are shown as Figure 6a-d. The model size is 1206 ×500 with the grid size 
of 10m.We use a Ricker wavelet with the peak frequency of 25 Hz as source 
function. The 60 shots are evently placed on the surface with a shot depth of 10 
m. we use 1206 receivers to record the reflection data for each shot, the receiver 
depth is 10 m. 

Figure 7 shows RTM imaging results based on the newly proposed pure 
acoustic equation. Figure 7a is used as reference, which is simulated by HFDPS 
method. And Figure 7b is solved by the proposed TTI RTM with FD method. 
In addition, there are no noise in shallow layer in Figure 7a and 7b. This test 
illustrates that TTI RTM can produce high-resolution imaging results.

Subsequently, in order to demonstrate the accuracy of the proposed RTM 
schemes using the FD method, we extract the single-traces comparison from 
Figure 7a and 7b, and shown in Figure 8. In Figure 8, we observe that the traces 
extracted from Figure 7b are in good agreement with that extracted from Figure 
7a. This result demonstrates that the proposed RTM schemes using the FD 
solver can accurately image the structure.
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Figure 6 The anisotropy parameters of Hess TTI model. (a) pv , (b) ε , (c) δ , (d) θ . 

Figure 7. The reverse time migration of Hess TTI model. (a) TTI RTM (used as reference), 
(b) TTI RTM

Figure 8. Comparison of traces at lateral distance: 1000 m and 10000m. The 
traces extracted from Figure 7a are represented by the solid blue line, the traces 
extracted from Figure 7b are represented by the dashed red line.
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Marmousi TTI model

In this case, we choose Marmousi TTI model (Mu et al., 2020b) to further 
demonstrate the precision of the proposed TTI RTM scheme, the model 
parameters are shown in Figure 9a-d. This model is discretized into 369 × 
188 grids with the grid interval of 12.5 m. A Ricker wavelet of the dominated 
frequency of 25 Hz is used as source function, and the time step is 0.0008 s. 
60 shots are uniformly placed on the surface with the shot depth of 12.5 m. 
For each shot, we use 296 receivers to receive the shot record information, and 
receiver depth is 12.5 m.

Figure 10a-b show the imaging results computed by the newly proposed 
anisotropic acoustic equation. From Figure 10a-b, we can notice that the 
imaging results calculated by the pure acoustic TTI wave equation has the clear 
and continuous imaging interfaces. Then, in order to demonstrate the accuracy 
of the proposed TTI RTM based on the FD solver, we generate the single-traces 
comparison between the Figure 10a and Figure 10b, and shown in Figure 11. 
In Figure 11, we can observe that the traces extracted from the Figure 10b are 
in good consistence with that extracted from Figure 10a. This result suggests 
that TTI RTM performed by FD method is reliable. Furthermore, because the 
proposed TTI RTM based on the FD solver, which has high computational 
efficiency. Therefore, the proposed TTI RTM can be conveniently extended to 
3D case to achieve high-resolution in anisotropic media.

Figure 9 The anisotropy parameters of Marmousi TTI model. (a) pv , (b) ε , (c) δ , (d) θ .
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Figure 10 The reverse time migration of Marmousi TTI model. 

Figure 11 Comparison of traces at lateral distance: 1000 m and 3000m. The traces extracted 
from Figure 10a are represented by the solid blue line, the traces extracted from Figure 10b 
are represented by the dashed red line.
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by Xu and Zhou (2014) as numerical solver. The accuracy of the wavefield 
simulated by the FD method has been confirmed by the numerical examples. 
However, as indicated by Liang et al. (2023), the wavefield simulated by the 
FD method cannot remain the amplitude of anisotropic wavefield. This issue is 
caused by the construction of the operator Sn. Therefore, to improve wavefield 
accuracy, one of methods is to develop an optimized operator Sn, which is our 
future work.

Secondly, the 3D application has received a lot of attention over the years. It 
is well known that the computational efficiency is dominated problem of the 3D 
application. The 2D version of the proposed wave equation can be simulated by 
efficient FD method. This advantage can significantly reduce the computational 
cost, which can be efficiently used to achieve wavefield simulation and migration 
imaging in 3D case. In our future work, we will achieve the RTM and LSRTM 
utilized the proposed wave equation to obtain high-quality imaging results in 
3D case.

CONCLUSION

In this paper, we derive a finite-difference solvable pure acoustic wave 
equation in tilted transversely isotropic media. Compared to coupled pseudo-
acoustic equations, the wavefield obtained using the pure acoustic equation 
remains noise-free and stable when anisotropic parameters ε < δ. The proposed 
pure acoustic TTI wave can accurately characterize the qP-wave kinematic 
behavior. In addition, the newly proposed pure acoustic wave equation 
demonstrates computational efficiency superior to previous pure acoustic wave 
equation wave equations solved through spectral-based methods, as illustrated 
by the computational efficiency analysis. Subsequently, we extend the proposed 
FD-solvable pure-acoustic TTI wave equation into implement reverse time 
migration (RTM) in TTI media. Two synthetic examples demonstrate that 
the imaging results produced by the proposed TTI RTM effectively correct for 
anisotropic effects, yielding high-quality imaging results. Moreover, due to the 
high computational efficiency of the proposed wave equation, the proposed TTI 
RTM technique is conductive for the practical applications for anisotropic media.
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APPENDIX A

Stability condition for the proposed 2D TTI pure qP-wave equation

Equation (16) can be rewritten as
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where  and  denote the spatial grid indices for the x- and z-axes, respectively. 
is the pressure wavefield, is time index. The matrix form of equation (A-1) 

is
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To ensure the numerical simulation stability of equation (A-1), the time step 
sampling should meet the definition as follow (Yang and Zhu, 2018; Mu et al., 
2020b):
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where t∆  is time sampling step, minA  is the minimum value of A. In most cases, 
ε is larger than δ. Therefore, minA  can be expressed as
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Assuming that x z d∆ = ∆ = ∆  and the Nyquist wavenumber /Nyqk dπ= ∆ , we can 
obtain

20 ,x z Nyqk k k≤ ≤               (A-6)
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Finally, the time sampling in TTI media can be expressed as
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