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ABSTRACT 

Addressing the issue of periodic noise in surface monitoring of microseismic data during hydraulic 
fracturing, which is caused by significant mechanical equipment and environmental interference, 
traditional methods have been found to be insufficient in their research of periodic noise. This 
paper conducts an analysis of the characteristics of periodic noise within actual microseismic 
data and introduces an effective method for the suppression of periodic noise in the microseismic 
background. The approach is primarily two fold: initially, it targets the suppression of continuous 
periodic noise present in the microseismic data, followed by the elimination of any remaining 
non-continuous periodic noise. The method presented in this paper is validated using a set of real 
microseismic monitoring outcomes, and the results substantiate the genuine effectiveness of the 
proposed technique.

KEY WORDS: Hydraulic fracturing · Microseismic signal processing · Background noise 
suppression · Periodic noise suppression
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INTRODUCTION

In the process of microseismic data monitoring, noise is typically categorized 
based on its regularity into periodic and random noise. Traditional methods for 
microseismic noise suppression primarily focus on the treatment of random 
noise, with relatively fewer research methods available for dealing with periodic 
noise in microseismic data (Chen et al.,2021; Lv,2019). For random noise, 
common approaches such as filtering and stacking across multiple channels are 
used to reduce its impact. Signals generated by microseismic events usually 
exhibit a certain degree of consistency and correlation, which random noise 
lacks. Consequently, random noise tends to cancel out during the stacking 
process.In contrast to random noise, periodic noise, due to its waveform 
similarity, cannot be processed through stacking and requires the design and 
application of specific methods for suppression. Therefore, periodic noise 
has a more severe impact on microseismic signals and is more challenging to 
remove. Consequently, effectively and accurately suppressing periodic noise 
has become a primary focus in current research.

In recent years, with the widespread application of microseismic technology 
in underground exploration and hydraulic fracturing monitoring, researchers 
have begun to focus on the issue of periodic noise in microseismic data. There 
are numerous methods currently used to address the issue of periodic noise 
suppression in microseismic data processing, primarily through time-frequency 
transformation and signal decomposition. For instance, Lyubushin utilized 
wavelet time-frequency analysis to suppress seismic noise (Lyubushin, 2021), 
while Mousavi et al. combined synchronized squeezing continuous wavelet 
transform with detection functions to remove periodic noise from signals 
(Mousavi & Langston, 2016). Additionally, decomposition and reconstruction-
based methods have been widely applied to suppress periodic noise. Empirical 
mode decomposition (EMD) and ensemble empirical mode decomposition 
(EEMD) are used to process the frequency domain real and imaginary parts 
of signals to reduce both random and periodic noise (Chen & Fomel, 2018; Li 
et al., 2020). Complete Ensemble Empirical Mode Decomposition (CEEMD) 
and other variational mode decomposition (VMD) methods further improve 
these techniques by reducing redundant intrinsic modes and addressing the 
mode aliasing issue, offering stronger noise resistance (Sun et al., 2020; Qiao 
et al., 2021; Liu et al., 2023). Recently, tensor decomposition methods such 
as tSVD and HOSVD have provided a new perspective for noise suppression. 
These methods effectively enhance the signal-to-noise ratio by extracting 
low-rank components in multidimensional data, especially when dealing with 
multichannel microseismic data in a high-noise environment. By using cross-
correlation and rearrangement techniques, combined with the SVD step, these 
methods can effectively identify and suppress noise components (Popa et al., 
2021; Deriche et al., 2020). Moreover, stochastic noise suppression methods 
based on wavelet thresholding and Lipschitz exponents, as well as statistical 
dictionary learning approaches, have offered new solutions for automatic 
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periodic noise suppression (Li et al., 2022; Yao et al., 2023; Zhang et al., 2022). 
These methods effectively identify and suppress noise by adaptively selecting 
appropriate threshold functions and updating dictionaries, thereby improving 
the quality of microseismic data. In recent years, there has been a growing 
number of researches that use neural networks for microseismic data denoising. 
For example, deep convolutional neural networks are used to remove noise 
by learning the features of microseismic data (Zheng et al., 2021; Zhao et al., 
2022; Sun & Hou, 2022). Other neural networks, such as the JointNet (Wu et 
al., 2023), the U-Net (Chirtu & Radoi, 2022), and the Generative Adversarial 
Network (GAN) (Li et al., 2023) can also suppress the noise and improve the 
quality of microseismic data.

In the process of denoising microseismic data, although existing methods 
have achieved varying degrees of success, they still face a series of challenges 
and limitations. These challenges primarily include computational difficulties, 
complex parameter settings, and low computational efficiency. For example, 
decomposition and reconstruction-based methods such as EMD, EEMD, and 
CEEMD can theoretically separate noise and signals effectively. However, 
in practical applications, these methods may encounter the issue of mode 
aliasing, which not only increases computational complexity but also affects 
the denoising performance. Mode aliasing occurs when signals of different 
frequencies are incorrectly grouped into the same mode during decomposition, 
making it difficult to distinguish noise from the signal.Wavelet thresholding 
denoising methods require the selection of appropriate threshold functions and 
mother wavelets. The choice of these parameters often relies on experience 
and experimentation, lacking universal guidelines. Improper parameter settings 
may lead to suboptimal denoising effects, or even the introduction of artifacts 
or signal distortion. Moreover, matrix decomposition-based methods such as 
Singular Value Decomposition (SVD) excel in denoising but come at a high 
computational cost, especially when dealing with large matrices. This not only 
increases the demand for computational resources but also extends processing 
times, affecting the capability for real-time or near-real-time data processing.
Traditional microseismic data processing methods, such as wavelet transform-
based denoising techniques and signal processing methods based on Empirical 
Mode Decomposition, have achieved certain successes in suppressing non-
periodic noise. However, they still fall short in the suppression of periodic noise. 
These methods often struggle to effectively differentiate between periodic and 
non-periodic components in the signal, particularly when the amplitude and 
energy levels of the noise vary significantly.Deep learning technology has 
shown great potential in the field of microseismic data processing, especially in 
denoising and feature extraction. However, it still faces several challenges and 
limitations. Firstly, deep learning models typically require a large amount of 
high-quality annotated data for training, and obtaining sufficient training data 
in microseismic monitoring can be both costly and time-consuming. Secondly, 
the issue of model overfitting is a key challenge. In the real-world scenario 
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where data diversity and noise variability are high, a model may perform well 
on the training set but lack generalization capabilities when applied to new data.

In response to the current shortcomings and deficiencies in the suppression 
methods for periodic noise in microseismic data, it is particularly necessary 
to explore more effective and reliable methods to suppress periodic noise in 
microseismic signals. Addressing this issue, this paper proposes a suppression 
method for periodic noise in microseismic data. Periodic noise is categorized 
into continuous periodic noise and non-continuous periodic noise based on the 
duration of waveform regularity. For continuous periodic noise in microseismic 
data, this paper suggests a suppression method based on the autocorrelation 
function. This method can extract periodic components from the signal and 
suppress continuous periodic noise by eliminating these components in the 
frequency domain. For non-continuous periodic noise, these noise interferences 
typically do not exhibit fixed periodicity in their waveforms, and the amplitude 
and energy levels may also vary significantly, having only a certain degree of 
similarity in form. The autocorrelation function performs well in extracting 
continuous periodic signal components but is less effective in detecting and 
extracting non-continuous periodic noise. To address this issue, the paper 
proposes a method for suppressing non-continuous periodic noise. After 
suppressing continuous periodic noise in microseismic data, the signal is divided 
into multiple segments of varying lengths based on waveform characteristics, 
according to the waveform matching method presented in this paper. Through 
correlation analysis and Dynamic Time Warping (DTW) algorithm (Cai et al., 
2021; Gomaa et al., 2017), these segmented signals are classified and mutually 
linearly eliminated, thereby achieving suppression of non-continuous periodic 
noise. By integrating these two steps, a better suppression effect on periodic 
noise in microseismic data can be achieved. To verify the effectiveness of the 
proposed method for removing periodic noise in microseismic data, a set of 
simulated data and a set of actual measured data were processed. Through result 
analysis, periodic noise in microseismic data was effectively suppressed, and 
the signal quality of microseismic data was significantly enhanced.

2 BACKGROUND PERIODIC NOISE SUPPRESSION METHOD 
RESEARCH

Research on Continuous Periodic Noise Suppression Methods

A stable mechanical equipment, when not affected by the external 
environment, should exhibit a regular periodic waveform characteristic. 
However, under noise interference, the periodic features can be obscured, 
making it difficult to separate the signal in the time domain. Conversely, in the 
frequency domain, the frequency value of periodic noise presents a discrete 
form, that is, discrete amplitude spectra or phase spectra in the frequency 
domain, while random noise and microseismic signals exhibit continuous 
amplitude spectra and phase spectra in the frequency domain. Therefore, if 
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the discrete form phase spectra in the microseismic data frequency domain 
can be eliminated, the implicit periodic characteristics can be removed. The 
problem now becomes how to determine which frequency domain components 
in microseismic data spectra belong to periodic noise. This paper adopts the 
method of calculating the autocorrelation function of microseismic data time-
domain waveform information and obtaining the frequency spectrum value of 
periodic noise as the frequency spectrum value of the implicit periodic noise in 
microseismic data. By using the autocorrelation function, which is a measure of 
the similarity of a signal with a time-shifted version of itself, one can identify 
the periodic components within the microseismic data. The discrete peaks in 
the autocorrelation function correspond to the periodicities in the signal, and by 
analyzing these peaks, one can extract the spectral components associated with 
the periodic noise.The auto-correlation function (ACF) of a continuous-time 
signal x(t) is defined as(Barot et al., 2020; Dvornik et al., 2021):

1( ) lim ( ) ( )
2

T

xx TT
R x t x t dt

T
τ τ

−→∞
= +∫                                 (1)

where τ is the time lag for continuous signals, k is the lag for discrete signals, 
T is the observation time for continuous signals, N is the number of samples 
for discrete signals, and x(t) represent the microseismic signal.The peaks in 
the ACF correspond to the periodicity of the signal. The lag τ or k at which the 
peaks occur can be related to the frequency f of the periodic noise by:

 1f
P

=                                                (2)

where P is the period of the noise, which is the inverse of the frequency. For 
discrete signals, the period P can be found by converting the lag k to a time 
interval and then finding the corresponding frequency.

The Fourier transform is used to move from the time domain to the frequency 
domain. For a continuous-time signal, the Fourier transform ( )x f is:

2( ) ( ) j ftx f x t e dtπ∞ −

−∞
= ∫                                       (3)

where f is the frequency. Once the frequencies associated with the periodic 
noise are identified, these components can be eliminated from the frequency 
spectrum X(f) by setting them to zero or attenuating them.After eliminating 
the periodic noise components, the Inverse Fourier Transform (IFT) or Inverse 
Discrete Fourier Transform (IDFT) is applied to obtain the noise-suppressed 
time-domain signal:

2( ) ( ) j ftx t X f e dfπ∞

−∞
= ∫                               (4)

By following these mathematical steps, the periodic noise can be effectively 
identified and suppressed in the microseismic data, allowing for a clearer 
analysis of the subsurface activity.
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Research on Suppression Methods for Non-Continuous Periodic Noise

After suppressing the periodic noise in microseismic data, non-continuous 
periodic noise with less regular patterns may still persist. These types of noise 
exhibit approximate similarities in waveform shape but differ in aspects such 
as waveform size. Therefore, identification and elimination of non-continuous 
periodic noise can only be based on these approximate waveform similarities. 
The method employed in this paper involves segmenting the microseismic 
signal and using the Dynamic Time Warping (DTW) algorithm to determine if 
there is similar waveform information between segments and to perform linear 
elimination. 

The DTW algorithm algorithm is a powerful technique used to measure the 
similarity between two temporal sequences, which may vary in speed or have 
time axis distortions. It is particularly useful for comparing time series data 
that may not be perfectly aligned in time. The DTW algorithm operates by 
finding an optimal match between two sequences, warping the time axis of one 
sequence to align with the other as closely as possible(Mantilla et al., 2017; 
Makarova et al., 2017;  Cai et al., 2022).

Given two time series 1 2{ , , , }NX x x x=  and 1 2{ , , , }MY y y y=  , the first step 
is to create an N M×  distance matrix D, where each element ijd  represents the 
distance between the points ix  and jy . This distance is often calculated using 
the Euclidean distance:

, , 1, , 1 1, 1min( , , )i j i j i j i j i jc d c c c− − − −= +                                  (5)

The optimal warping path through the cumulative distance matrix C is the 
one that minimizes the total cumulative distance ,N MC , which is the bottom-
right corner of the matrix. This path is found by backtracking from ,N MC  to the 
origin (0,0), following the path of minimum cumulative distance at each step.To 
ensure that the warping path is valid, certain constraints are often applied. One 
common set of constraints is to limit the path to stay within a certain diagonal 
band around the main diagonal, which prevents excessive warping and aligns 
similar points in the sequences. The total cumulative distance ,N MC after finding 
the optimal path is used as a measure of similarity between the two sequences. 
A smaller value indicates a closer match between the sequences.

Microseismic Signal Segmentation Method

The systematic segmentation method described in this text is designed to 
effectively identify and separate distinct segments within a microseismic signal 
based on changes in its waveform characteristics. Select an appropriate window 
size W based on the expected frequency and periodicity of the signal. The 
window should be large enough to capture local features but not so large that it 
obscures important details. Implement a sliding window that moves along the 
temporal axis of the signal, starting from the beginning. The window advances 
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in steps equal to its size W. At each position t, the window encompasses a 
segment S(t) of the signal.or each window position, compute a set of descriptive 
features F that summarize the waveform information within the window. These 
features may include the mean µ , variance 2σ , and energy E :
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Define a change threshold θ based on the statistical properties of the signal 
and empirical judgment. This threshold will be used to determine when a 
significant change in the signal occurs. Compare the feature differences 
between consecutive windows to assess the degree of change in the signal. If the 
difference in features exceeds the threshold θ, it indicates a significant change 
in the signal within that window. Mark the end point of the current window as 
a segmentation point whenever a significant change is detected. These points 
are recorded and used for subsequent signal segmentation, ensuring that each 
segment corresponds closely to a change in the waveform of the signal. Continue 
this process throughout the entire signal, marking segmentation points at each 
significant change. Based on these points, the original signal is divided into 
multiple sub-segments, each containing a continuous waveform information.

Periodic Noise Suppression Within Segmented Data

For each pair of signal segments, apply DTW to each pair of segments to 
find the best match despite any time misalignments. Calculate the similarity S 
based on the total cost of the optimal DTW path, where a lower cost indicates 
higher similarity. Set a similarity threshold τ to determine if segments are 
similar enough to require processing. If the similarity S exceeds the threshold 
τ, the segments are considered similar. For similar segments, perform linear 
subtraction to eliminate the common waveform information, reducing noise.

DATA PROCESSING AND ANALYSIS 

Simulation Data Analysis 

To validate the effectiveness of the periodic noise suppression method 
proposed in this paper, we prepared a set of microseismic signal samples 
containing periodic noise. These samples were collected during an actual 
pressure construction process, with a signal sampling duration of 1 second and a 
sampling frequency of 500 Hz. Due to the complexity of the field environment, 
the data inevitably includes non-continuous periodic noise caused by various 
ground interference sources. The results can be seen in the figure below:
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Fig. 1  Synthetic microseismic data containing discontinuous periodic noise

Subsequently, we obtained another segment of data with significant 
continuous periodic noise. This noise exhibits a stable periodic characteristic, 
allowing the periodic noise in the signal to be clearly observed, as shown in the 
figure below:

Fig. 2  Synthetic continuous periodic noise

By superimposing these two types of noise signals, we can obtain a simulated 
signal. The result can be seen in the figure below:

Fig. 3  Synthetic Simulation Signal

We applied the periodic noise suppression method based on the auto-
correlation function to the simulated signal. We obtained its auto-correlation 
function, and based on this function, we were able to identify and extract the 
periodic components from the signal. The results can be seen in the figure 
below:

Fig. 4  Autocorrelation Function Extraction
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By eliminating the discrete spectral values obtained from the auto-correlation 
function in the frequency spectrum of the simulated signal, we can effectively 
remove the periodic noise from the simulated data while preserving the useful 
signal information. The processing results can be seen in Figures 5 and 6:

Fig. 5  Time Domain Analysis of Continuous Periodic Noise Suppression Results

Fig. 6  Frequency Domain Analysis of Continuous Periodic Noise Results

Upon analyzing the results of the removal of periodic noise, it is observed 
that the continuous periodic noise is effectively suppressed. This indicates the 
effectiveness of the method proposed in this paper in suppressing continuous 
periodic noise.

Fig. 7  Results of Continuous Periodic Noise Removal
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There is a certain amount of non-continuous periodic noise present in the 
data, to address the non-continuous periodic noise present in the simulated 
data model, we employed a suppression method specifically designed for non-
continuous periodic noise. A window length of 100 sample points was set, 
with a given change threshold of 0.8. The signal was segmented into multiple 
sections, and the results can be seen in the figure below:

Fig. 8  Signal Segmentation Results

Using the DTW method, we obtained the similarity distances between each 
segment. The smaller the distance, the higher the waveform similarity between 
the two segments. The similarity distances between the signal segments can be 
seen in the figure below:

Fig. 9  Waveform Similarity Distance Between Signal Segments

By reducing the noise within the segments that are grouped as similar, we can 
further decrease the interference of non-continuous periodic noise, enhancing 
the accuracy and reliability of the signal. The final results after removing non-
continuous periodic noise can be seen in the figure below:

Fig. 10  Discontinuous Periodic Noise Suppression Results
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Analysis of Field Data Processing

The microseismic data used comes from a tight oil and gas field in China, 
located in a hilly area, and hydraulic fracturing is employed for extraction. 
To monitor the dynamic changes in the underground reservoir, ground-based 
monitoring methods are used for microseismic data collection. The sampling 
interval is set at 0.02 seconds to ensure high-frequency resolution and accuracy 
of the data. A segment of microseismic data was randomly extracted from 
the monitoring results of a certain fracturing operation for processing. Upon 
observation, the actual microseismic data waveform was found to be severely 
interfered with by periodic noise. To address this interference, we will employ 
a periodic noise suppression method based on the auto-correlation function and 
a method for suppressing non-continuous periodic noise.

Fig. 11  Actual Noisy Microseismic Data

Firstly, we will apply the periodic noise suppression method based on the 
auto-correlation function to process the monitored data segment. The auto-
correlation function is used to extract the regular periodic information within 
the data and to obtain its spectral result, as shown in the figure below:

Fig. 12  Autocorrelation Function Extraction Result Analysis

Based on the spectral information of the periodic noise obtained from the 
auto-correlation function, we perform noise suppression in the frequency 
domain by setting the discrete spectral peaks in the actual microseismic data 
spectrum to zero. The result of the noise suppression can then be obtained. 
The time-domain waveform corresponding to the extracted discrete frequency 
spectrum represents the long-lasting periodic noise that has been removed. The 
time-domain and frequency-domain results of the long-lasting periodic noise 
removal are shown in the figures below:



12

Fig. 13  Time Domain Analysis of Continuous Periodic Noise Suppression Results

Fig. 14  Frequency Domain Analysis of Continuous Periodic Noise Suppression Results

The results of removing the long-lasting periodic noise in the microseismic 
data using the method proposed in this paper are shown in the figure below:

Fig. 15  Results of Continuous Periodic Noise Removal

After the aforementioned processing, we conduct a correlation analysis to 
determine if there is any remaining continuous periodic noise. If no continuous 
periodic noise is detected, the processed results are then outputted. Following 
the suppression of long-lasting periodic noise in the microseismic data using 
the method proposed in this paper, no continuous periodic noise is present in 
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the data. However, some non-continuous periodic noise remains. To address 
this, we apply the non-continuous periodic noise suppression method described 
in this paper.The signal is first segmented into multiple sections based on the 
characteristics of waveform changes, and then divided by red vertical lines for 
segmentation, as shown in the figure below:：

Fig. 16  Signal Segmentation Processing Results

For the segmented signals, we use the DTW algorithm to calculate the 
similarity distance between waveforms. The closer the similarity, the lower the 
height of the peak in the result, as shown in the figure below:

Fig. 17  Display of Waveform Similarity Distance

By reducing the signals that are classified into the same group, we can 
further reduce the interference of non-continuous periodic noise, enhancing 
the accuracy and reliability of the signal. The results after suppressing non-
continuous periodic noise are shown in the figure below:

Fig. 18  Results After Suppression of Continuous Periodic Noise
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Based on the analysis of actual measured data, we can conclude that the method 
proposed in this paper for removing periodic noise from microseismic data is 
effective in practical applications. By processing the data with this method, 
the quality of microseismic data can be significantly improved, enhancing the 
reliability of the signal and the extraction of valid information.

CONCLUSION

In ground monitoring of hydraulic fracturing, microseismic data is often 
affected by mechanical equipment and environmental noise, particularly 
periodic noise, which poses challenges for accurate data analysis. In response 
to the severe impact of periodic noise in microseismic background noise and the 
limitations of traditional noise suppression methods in handling precision, this 
paper proposes an effective method to suppress periodic noise in microseismic 
data, including both continuous and non-continuous periodic noise. The specific 
conclusions are as follows:

1. Traditional microseismic data noise suppression methods mainly target 
random noise and do not have specialized algorithms for dealing with periodic 
noise in microseismic data.

2. Correlation functions can be used to extract regular periodic functions 
from microseismic data, which are then transformed into the frequency domain. 
The frequency domain values are precisely eliminated from the original signal 
spectrum to suppress continuous periodic noise.

3. Microseismic data is segmented into signal segments containing multiple 
non-periodic waveforms based on waveform transformation characteristics. 
The DTW algorithm is used to calculate the similarity distances between 
these signal segments, and signal segments that meet the threshold criteria are 
matched and reduced to eliminate approximately regular noise.

4. The method proposed in this paper is highly applicable, easy to operate, 
and can effectively suppress periodic noise in microseismic data, improving the 
signal-to-noise ratio of microseismic signals.
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