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ABSTRACT 

Time-lapse (4D) full-waveform inversion (FWI) of seismic data can help estimate the sub- 
surface changes due to hydrocarbon production and CO2 injection. Previously, we have 
developed a 4D FWI methodology for VTI (transversely isotropic with a vertical symmetry 
axis) media. However, the VTI algorithm fails to accurately reconstruct the 4D variations in 
the presence of dipping anisotropic layers that often cause a tilt of the symmetry axis. Here, 
we extend time-lapse FWI to 2D TI media with a tilted symmetry axis (TTI). The symmetry 
axis is assumed to be orthogonal to the reflectors, so its orientation can be es- timated from 
migrated depth images. The proposed algorithm is tested on the BP TTI model using three 
different time-lapse strategies. If the 4D data are repeatable, the param- eter changes can be 
reconstructed with sufficient accuracy even in the presence of moderate noise. We incorporate 
the “source-independent” FWI technique to mitigate the influence of errors in the estimated 
source wavelet and address the wavelet nonrepeatability in time- lapse data. In addition, we 
discuss the influence of several common nonrepeatability issues on the time-lapse inversion 
results. Testing on the BP model shows that the parallel- difference time-lapse method is 
more sensitive to nonrepeatability-related problems than the other employed 4D strategies.
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INTRODUCTION

Time-lapse (4D) full-waveform inversion (FWI) is an important tool for 
monitoring sub- surface changes caused by hydrocarbon production and CO2 
injection with high spatial resolution (e.g., Lumley, 2010; Smith and Tsvankin, 
2013; Vigh et al., 2014; Maharramov et al., 2016; Pevzner et al., 2017; Singh 
et al., 2018; Zhang and Alkhalifah, 2020; Li et al., 2021b,a). Instead of 
estimating time shifts or amplitude variations, 4D FWI inverts for the changes 
in the medium properties such as the P- and S-wave velocities. In addition, 
FWI uses different wave types (not just P-wave), which improves subsurface 
illumination and helps constrain more medium parameters. Moreover, an FWI 
image (the derivative of velocity model) often provides an improved alternative 
to conventional migration without employing tedious processing steps (Hicks 
et al., 2016; Arts et al., 2004; Davy et al., 2021). Using FWI image in time-
lapse seismic makes it possible to avoid a number of preprocessing steps and 
provide more rapid turnaround to support reservoir management decisions.

Time-lapse FWI can be implemented in several different ways. Plessix et al. 
(2010) develop the parallel-difference (PD) 4D FWI strategy that inverts the 
baseline and mon- itor data independently using the same initial model. Another 
workflow (Routh et al., 2012) uses the inversion of the baseline survey to build 
the initial model for inverting the monitor data (sequential-difference strategy; 
SD), which improves the convergence of the monitor inversion. To increase the 
sensitivity of FWI to the changes inside the reservoir, Watanabe et al. (2004) 
and Denli and Huang (2009) suggest to directly invert the differencebetween 
the monitor and baseline data for the time-lapse parameter variations (double- 
difference strategy; DD). Zhou and Lumley (2021a) average the parameter 
variations pro- duced by forward (baseline to monitor) and reverse (monitor 
to baseline) applications of the sequential-difference strategy to reduce the 
dependence of the estimated time-lapse changes on the accuracy of the inverted 
baseline model (central-difference strategy; CD). However, the CD approach 
doubles the computational time compared to the SD and DD methods, typically 
without a significant improvement in resolution.

Most existing 4D FWI applications are limited to isotropic (often acoustic) 
media, which limits their applicability. Liu and Tsvankin (2021) extend 
the methodology of 4D FWI to VTI (transversely isotropic with a vertical 
symmetry axis) media and implement it with three different time-lapse strategies 
mentioned above (PD, SD, and DD). However, transversely isotropic layers 
(such as shales) may be dipping, which leads to a tilt of the symmetry axis (e.g., 
Tsvankin, 2012). For example, uptilted shale layers near salt domes produce an 
effective tilted TI (TTI) model, often with a large inclination of the symmetry 
axis.

As shown by a number of synthetic and field-data studies, VTI algorithms 
become inadequate in the presence of an even moderate symmetry-axis tilt. 
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For example, Behera and Tsvankin (2009) demonstrate that application of VTI 
velocity-analysis and imaging methods to data from TTI media may lead to 
significant misfocusing of reflectors and errors in parameter estimation. Wang 
and Tsvankin (2013) develop 2D P-wave reflectiontomography for TTI media 
and test it on field data from Volve field in the North Sea. Their results show 
that taking the symmetry-axis tilt into account significantly improves migrated 
images. Singh et al. (2021) apply an elastic TTI FWI algorithm to the Volve 
data set and incorporate facies constraints to regularize the inversion. However, 
to our knowledge, time-lapse FWI for elastic TTI media has not been discussed 
in the literature.

One of the challenges in FWI is its high sensitivity to the accuracy of the 
estimated source wavelet (Song et al., 1995; Pratt, 1999; Warner et al., 2013; 
Luo et al., 2014; Yuan et al., 2014). This issue is particularly significant for 
time-lapse FWI because the wavelet can change between the baseline and 
monitor surveys. Liu and Tsvankin (2022) incorporate a source-independent 
(SI) technique (Choi and Alkhalifah, 2011; Zhang et al., 2016; Bai and 
Tsvankin, 2019) into 4D FWI for VTI media and demonstrate its effectiveness 
in mitigating the influence of errors in the source wavelet on the obtained time-
lapse parameter variations. Here, we apply the SI algorithm to time-lapse FWI 
for TTI media.

Another common issue in time-lapse seismic is the nonrepeatability (NR) of 
the baseline and monitor surveys. Ideally, the difference between the monitor 
and baseline data is caused only by the subsurface changes. However, the data 
difference can be distorted by a number of other factors. Zhou and Lumley 
(2021b) discuss the influence of several NR issues on time-lapse parameter 
inversion and the performance of 4D methods. However, their analysis is 
limited to isotropic acoustic media with known density, an inadequate model 
for many case studies.

Here, we extend the previously developed time-lapse VTI FWI algorithm 
to TTI media, which makes it suitable for a wider range of subsurface models. 
We begin by discussing the FWI methodology for anisotropic media and its 
application to time-lapse seismic data. Then we introduce a TTI FWI algorithm 
and implement it using three 4D strategies discussed above (PD, SD, and DD). 
The proposed methodology is tested on synthetic data for the section of the BP 
TTI model that includes an anticline. Then the source- independent method is 
incorporated into the TTI extension of the FWI algorithm to reduce the impact 
of distortions in the source signature. In addition, we analyze the influence of 
several other common nonrepeatability issues on 4D FWI implemented with 
several time- lapse strategies.
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METHODOLOGY OF SOURCE-INDEPENDENT TIME-LAPSE FWI 
FOR TTI MEDIA

FWI for anisotropic media

Full-waveform inversion is designed to minimize the difference between the 
observed and simulated data, typically using the L2-norm objective function 
S(m) (e.g., Tarantola,1984):
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∥∥∥
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where dsim is the data simulated for the model m and dobs is the observed data. 
Here, we minimize this objective function for multicomponent data from 2D 
TTI media.

We describe P- and SV-waves in TTI media using a velocity parameterization 
that was shown to reduce the trade-offs between the TI parameters (Kamath and 
Tsvankin, 2016). Also, the velocities (and their gradients) share the same units, 
which facilitates the optimization process. This notation includes the P- and 
S-wave velocities in the symmetry- axis direction (VP0 and VS0), the P-wave 
velocity in the isotropy plane, which is orthogonal to the symmetry axis (Vhor,P), 
and the P-wave normal-moveout velocity from a horizontal reflector in the 
corresponding VTI medium (Vnmo,P). These four parameters along with density 
and the symmetry-axis tilt θ fully describe the signatures of P- and SV-waves 
in the vertical plane that contains the symmetry axis.

Following Kamath and Tsvankin (2016) and Liu and Tsvankin (2021), the 
adjoint-state method is used to calculate the gradient of the objective function 
S(m) with respect to the model parameters. We employ a nonlinear conjugate-
gradient method to iteratively update the medium parameters using the 
derivatives of the objective function expressed

where dsim is the data simulated for the model m and dobs is the observed data. Here, we

minimize this objective function for multicomponent data from 2D TTI media.

We describe P- and SV-waves in TTI media using a velocity parameterization that

was shown to reduce the trade-offs between the TI parameters (Kamath and Tsvankin,

2016). Also, the velocities (and their gradients) share the same units, which facilitates the

optimization process. This notation includes the P- and S-wave velocities in the symmetry-

axis direction (VP0 and VS0), the P-wave velocity in the isotropy plane, which is orthogonal

to the symmetry axis (Vhor,P), and the P-wave normal-moveout velocity from a horizontal

reflector in the corresponding VTI medium (Vnmo,P). These four parameters along with

density and the symmetry-axis tilt θ fully describe the signatures of P- and SV-waves in

the vertical plane that contains the symmetry axis.

Following Kamath and Tsvankin (2016) and Liu and Tsvankin (2021), the adjoint-state

method is used to calculate the gradient of the objective function S(m) with respect to

the model parameters. We employ a nonlinear conjugate-gradient method to iteratively

update the medium parameters using the derivatives of the objective function expressed

as:

∂S(m)

∂m
= −

[∂dsim

∂m

]
q , (2)

where q is the residual wavefield. To find the optimal step length for all medium pa-

rameters, we implement a line-searching algorithm which improves the convergence of the

objective function near its minimum compared with the more conventional constant step-
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where q is the residual wavefield. To find the optimal step length for all 
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the convergence of the objective function near its minimum compared with 
the more conventional constant step- length method (K¨ohn et al., 2012). The 
step length is scaled by the ratio of the maximum values of the gradient to the 
medium parameter so that the model updates are consistent with the model 
value.

Forward modeling is based on the finite-difference solution of the elastic 
wave equation for heterogeneous TTI media:
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cijkl

∂uk
∂xl
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= fi , (3)

where u is the particle displacement, ρ is the density, cijkl is the stiffness tensor, and f is

the density of the body forces. The wave equations for TTI and VTI media are described

in more detail in Appendix A.

Strategies of time-lapse FWI

Time-lapse (4D) FWI operates with the baseline and monitor data sets. Here, we fo-

cus on three common 4D FWI strategies discussed in the introduction: the parallel-

difference (PD; Plessix et al., 2010), sequential-difference (SD; Asnaashari et al., 2012),

and double-difference (DD; Denli and Huang, 2009; Waldhauser and Ellsworth, 2020) meth-

ods. To operate directly with the observed (dobs
m − dobs

b ) and simulated (dsim
m − dsim

b ) data

difference, the DD method (Figure 1) generates the “composite” data dcom:

△d = (dobs
m − dobs

b )− (dsim
m − dsim

b ) = dcom − dsim
m , (4)
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dcom = dobs
m − dobs

b + dsim
b , (5)

where the subscripts “b” and “m” refer to the baseline and monitor data, respectively.

The DD method estimates the parameters of the monitor model by minimizing △d from

equation 4; the initial monitor model is obtained by inverting the baseline data.

[Figure 1 about here.]

SYNTHETIC EXAMPLE

2D BP TTI model

The proposed time-lapse FWI algorithm is applied to the section of the 2D BP TTI

model (Figure 2a-e), which contains an anticline. The model size is 4.5×1.8 km with

a grid size of 10×10 m; the data are excited by 56 shots placed at a depth of 20 m with

a constant interval of 80 m. There are 435 receivers on the sea floor at a depth of 210 m,

which emulates ocean-bottom acquisition. The top of the model represents free surface,

whereas for the other three boundaries we use the perfectly-matched-layers (PML) condi-

tions. The maximum symmetry-axis tilt for this section of the BP model does not exceed

35◦ (Figure 3).

To obtain the initial model (Figures 2f-j), a Gaussian smoothing filter with a standard

deviation of 70×70 m is applied to the actual parameter fields. Reflection tomography

and/or borehole information can help build the initial model in field-data applications.
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where the subscripts “b” and “m” refer to the baseline and monitor data, 
respectively. The DD method estimates the parameters of the monitor model 
by minimizing △d from equation 4; the initial monitor model is obtained by 
inverting the baseline data.

Figure 1: Workflow of the double-difference (DD) time-lapse strategy.
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Figure 1: Workflow of the double-difference (DD) time-lapse strategy.
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SYNTHETIC EXAMPLE

2D BP TTI model

The proposed time-lapse FWI algorithm is applied to the section of the 2D 
BP TTI model (Figure 2a-e), which contains an anticline. The model size is 
4.5×1.8 km with a grid size of 10×10 m; the data are excited by 56 shots 
placed at a depth of 20 m with a constant interval of 80 m. There are 435 
receivers on the sea floor at a depth of 210 m, which emulates ocean-bottom 
acquisition. The top of the model represents free surface, whereas for the other 
three boundaries we use the perfectly-matched-layers (PML) condi- tions. The 
maximum symmetry-axis tilt for this section of the BP model does not exceed 
35◦ (Figure 3).

To obtain the initial model (Figures 2f-j), a Gaussian smoothing filter with 
a standard deviation of 70×70 m is applied to the actual parameter fields. 
Reflection tomography and/or borehole information can help build the initial 
model in field-data applications.

The monitor model is generated by reducing the baseline parameters VP0, VS0, 
and ρ in the target area (the thin horizontal layer) by 10% (Figures 2k, l, and m).

The input data are the vertical and horizontal particle velocities simulated 
using the elastic wave equation 3 for TTI media. FWI updates all parameters 
(the velocities and density) simultaneously. A multiscale approach with four 
frequency bands (2-5 Hz, 2-9 Hz, 2-13 Hz, and 2-19 Hz) is implemented to 
mitigate the cycle-skipping problem in FWI. The data below 2 Hz are excluded 
from the inversion because such low frequencies are usually unavailable in the 
field.

To estimate the tilt of the symmetry axis, we conduct depth migration for 
the initial baseline model and set the axis orthogonal to the reflectors (Wang 
and Tsvankin, 2013; Singh et al., 2021). Because the tilt for the BP model is 
mild, we employ VTI migration to generate a depth image using the updated 
medium parameters and apply a code (sfdip) from Madagascar (Fomel et al., 
2013) to estimate the dips. This approach yields the results that are close to 
those obtained using TTI migration. An alternative way to generate a depth 
image for dip picking is to apply vertical differentiation to the velocity model 
obtained from high-frequency FWI (Davy et al., 2021), which also works well 
for our model. Because the symmetry-axis tilt is mild and does not change 
significantly over iterations, we update the tilt only after each inversion stage 
(frequency band) using the obtained structure dips.
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Figure 2: Parameters of the baseline BP TTI model with a grid size of 10 × 10 m: (a) the 
P-wave symmetry-axis velocity (VP0), (b) the S-wave symmetry-axis velocity (VS0), (c) the 
density (ρ), (d) the P-wave velocity in the isotropy plane (Vhor,P), and (e) the P-wave normal-
moveout velocity (Vnmo,P). The initial baseline model of: (f) VP0, (g) VS0, (h) ρ,
(i) Vhor,P, and (j) Vnmo,P. The actual time-lapse differences in (k) VP0, (l) VS0, and (m) ρ. Note 
that there are no time-lapse changes in Vhor,P and Vnmo,P.

Figure 3: Tilt of the symmetry axis estimated by migrating the baseline data using the actual 
baseline model.

As mentioned above, we apply 4D FWI with the parallel-difference (PD), 
sequential- difference (SD), and double-difference (DD) strategies. The inverted 
baseline parameters are employed as the initial model in the monitor inversion 
in the SD and DD strategies without any smoothing. For the first test, the 
monitor data are acquired with perfect repeatability. The results (used below 
as the benchmark) show that all three strategies reconstruct 4D variations with 
sufficient spatial resolution (Figure 4). Because of the parameter trade-offs, the 
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Figure 2: Parameters of the baseline BP TTI model with a grid size of 10 × 10 m: (a)
the P-wave symmetry-axis velocity (VP0), (b) the S-wave symmetry-axis velocity (VS0), (c)
the density (ρ), (d) the P-wave velocity in the isotropy plane (Vhor,P), and (e) the P-wave
normal-moveout velocity (Vnmo,P). The initial baseline model of: (f) VP0, (g) VS0, (h) ρ,
(i) Vhor,P, and (j) Vnmo,P. The actual time-lapse differences in (k) VP0, (l) VS0, and (m) ρ.
Note that there are no time-lapse changes in Vhor,P and Vnmo,P.
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Figure 3: Tilt of the symmetry axis estimated by migrating the baseline data using the
actual baseline model.
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time-lapse variations of Vhor,P and Vnmo,P (these velocities are unchanged) do not 
completely vanish. The DD strategy reconstructs the 4D variations with the 
highest resolution and generates the fewest errors outside the reservoir because 
the inversion of the monitor data operates with the actual 4D data difference. 
The SD and DD strategies are more computationally efficient and yield fewer 
artifacts than PD because the monitor inversion starts from the estimated 
baseline model.

Figure 4: Time-lapse parameter variations obtained from the noise-free multicomponent 
data. The parallel-difference method: (a) VP0, (b) VS0, (c) ρ, (d) Vhor,P, and (e) Vnmo,P. The 
sequential-difference method: (f) VP0, (g) VS0, (h) ρ, (i) Vhor,P, and (j) Vnmo,P. The double-
difference method: (k) VP0, (l) VS0, (m) ρ, (n) Vhor,P, and (o) Vnmo,P.

Influence of tilt

To evaluate the influence of the symmetry-axis tilt on the wavefield, we 
compare the ver- tical particle velocity simulated using the TTI and VTI 
algorithms for the actual baseline model (Figure 5). The reflected, diving, 
and converted waves computed for the two models match reasonably well for 
offsets smaller than 2 km because the tilt is relatively mild. The influence of tilt 
increases with the offset x and becomes more significant for waves that cross 
the dipping flanks of the anticline (x ≥ 2 km) where the tilt is largest. Because 
the reservoir is subhorizontal (Figure 3), the VTI algorithm still resolves the 
parameter changes with acceptable accuracy.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Figure 4: Time-lapse parameter variations obtained from the noise-free multicomponent
data. The parallel-difference method: (a) VP0, (b) VS0, (c) ρ, (d) Vhor,P, and (e) Vnmo,P.
The sequential-difference method: (f) VP0, (g) VS0, (h) ρ, (i) Vhor,P, and (j) Vnmo,P. The
double-difference method: (k) VP0, (l) VS0, (m) ρ, (n) Vhor,P, and (o) Vnmo,P.
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Next, we design a different monitor model where the target layer is dipping 
and em- bedded in the left flank of the anticline (Figures 6a-c). After simulating 
the data for the actual TTI model, we conduct time-lapse FWI using the SD 
strategy. The 4D TTI al- gorithm accurately estimates the parameter changes 
in the reservoir (Figures 6i-m). In contrast, the size and magnitude of the time-
lapse parameter variations (especially in ρ) are underestimated if the symmetry-
axis tilt is ignored in FWI (Figures 6d-h). In addition, the VTI inversion generates 
significant false anomalies in all parameters along and below the anticline (red 
arrows). The inadequacy of the VTI model leads to parameter cross-talk that 
produces false anomalies in the velocities Vhor,P and Vnmo,P (which are held constant). 
Therefore, it is essential to apply the TTI FWI algorithm if the symmetry axis is 
tilted inside and around the reservoir, even if the tilt is relatively mild.

Figure 5: Shot gathers of the vertical particle velocity for: (a) the actual TTI medium, and 
(b) the corresponding VTI medium. Plot (c) shows the difference between plots (a) and (b).

Figure 6: Time-lapse changes inside the reservoir located in a dipping segment of the anticline. 
The actual time-lapse changes: (a) VP0, (b) VS0, (c) ρ. The time-lapse variations estimated by 
the VTI [(d) VP0, (e) VS0, (f) ρ, (g) Vhor,P, and (h) Vnmo,P] and TTI [(i) VP0, (j) VS0, (k) ρ, (l) Vhor,P, 
and (m) Vnmo,P] algorithms. The red arrows point to the false anomalies produced by the VTI 
algorithm that does not take the symmetry-axis tilt into account.

(a) (b) (c)

TTI VTI VTI-TTI 

Ti
m

e 
(s

)

x (km) x (km) x (km)

Figure 5: Shot gathers of the vertical particle velocity for: (a) the actual TTI medium,
and (b) the corresponding VTI medium. Plot (c) shows the difference between plots (a)
and (b).
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Figure 6: Time-lapse changes inside the reservoir located in a dipping segment of the
anticline. The actual time-lapse changes: (a) VP0, (b) VS0, (c) ρ. The time-lapse variations
estimated by the VTI [(d) VP0, (e) VS0, (f) ρ, (g) Vhor,P, and (h) Vnmo,P] and TTI [(i) VP0,
(j) VS0, (k) ρ, (l) Vhor,P, and (m) Vnmo,P] algorithms. The red arrows point to the false
anomalies produced by the VTI algorithm that does not take the symmetry-axis tilt into
account.
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Influence of nonrepeatable noise

To test the robustness of our method for noisy data, we add nonrepeatable 
random Gaus- sian noise with the signal-to-noise ratio (SNR) equal to 15 to 
both the baseline and monitor records for the model in Figure 2.

Figure 7: Time-lapse parameter variations obtained from noisy baseline and monitor data 
(the signal-to-noise ratio is 15) for the model in Figure 2. The parallel-difference strategy:
(a) VP0, (b) VS0, and (c) ρ. The sequential-difference strategy: (d) VP0, (e) VS0, and (f) ρ. The 
double-difference strategy: (h) VP0, (i) VS0, and (j) ρ.

Figure 7 shows the inversion results for the parameters VP0, VS0, and ρ. As 
expected, the added noise degrades the reconstruction of the 4D variations 
(especially in ρ) and enhances parameter trade-offs. Similar to the noise-free 
test, the SD and DD strategies produce relatively few artifacts, whereas the 
noise-induced distortions are more pronounced in the output of the PD strategy. 
These observations are consistent with the results of Liu and Tsvankin (2021) 
for VTI media.

Influence of source wavelet

In 4D seismic processing, the source wavelet is usually estimated from the 
baseline data af- ter matching monitor and baseline records. However, wavelet 
extraction is time-consuming and error-prone, and the wavelets for the baseline 
and monitor data sets may differ. Errors in the wavelet distort the FWI results 
because they hinder matching of the observed and simulated data.

To analyze the influence of signal distortions, we carry out FWI using a 
wavelet (Wavelet1, Figure 8b) that substantially differs from the actual one 
(Figure 8a) in both phase and amplitude.

(a)

(b)

(c)

(d)

(e)

(f)

(h)

(i)

(g)

snr15
Figure 7: Time-lapse parameter variations obtained from noisy baseline and monitor data
(the signal-to-noise ratio is 15) for the model in Figure 2. The parallel-difference strategy:
(a) VP0, (b) VS0, and (c) ρ. The sequential-difference strategy: (d) VP0, (e) VS0, and (f) ρ.
The double-difference strategy: (h) VP0, (i) VS0, and (j) ρ.
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Figure 8: Source wavelets used in the synthetic examples: (a) the Ricker wavelet with a 
central frequency of 10 Hz (actual wavelet) and (b) the distorted “Ricker” wavelet with a 
central frequency of 17 Hz (Wavelet 1). The frequency spectra of: (c) the actual wavelet [see 
plot (a)] and (d) Wavelet 1 [see plot (b)].

First, we apply FWI to the baseline data using Wavelet 1. Because of the 
wavelet distortion, the model-updating algorithm could not converge to the 
global minimum of the objective function and reconstruct the anticline and 
the reservoir (Figures 9a-c). Such large errors make it clear that conventional 
FWI would not be able to estimate the time-lapse changes due to the wavelet 
distortions.

To reduce the dependence of the inversion results on the accuracy of the source 
sig- nal, we follow Liu and Tsvankin (2022) and implement the convolution-
based source- independent (SI) objective function in the time domain (Choi and 
Alkhalifah, 2011). The SI algorithm (Figures 9d-f) dramatically improves the 
accuracy of the inverted parame- ters and reconstructs the baseline model with 
a resolution close to that of the benchmark sections (compare Figure 9d-f and 
Figures 9a-c).

Figure 9: Baseline models estimated using Wavelet 1 by the conventional FWI [(a) VP0, (b) 
VS0, and (c) ρ] and the source-independent FWI algorithms [(d) VP0, (e) VS0, and (f) ρ].

Next we perform the monitor inversion using the source-independent 
algorithm with the PD and SD strategies and compute the time-lapse parameter 
variations. The DD method is not employed here because of the phase 
mismatch between the observed data and the data simulated for the inverted 

Frequency (Hz)Time (s)

(c)

(d)

Figure 8: Source wavelets used in the synthetic examples: (a) the Ricker wavelet with a
central frequency of 10 Hz (actual wavelet) and (b) the distorted “Ricker” wavelet with a
central frequency of 17 Hz (Wavelet 1). The frequency spectra of: (c) the actual wavelet
[see plot (a)] and (d) Wavelet 1 [see plot (b)].

40

(a)

(d)
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(c)

(f)

Figure 9: Baseline models estimated using Wavelet 1 by the conventional FWI [(a) VP0,
(b) VS0, and (c) ρ] and the source-independent FWI algorithms [(d) VP0, (e) VS0, and (f)
ρ].
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baseline model using the distorted wavelet (Liu and Tsvankin, 2022). Despite 
underestimating the time-lapse changes inside the reservoir, the output of the 
PD and SD methods is sufficiently close to the benchmark sections, which is 
consistent with the results of Liu and Tsvankin (2022) for VTI media. Similar 
to the benchmark test, the SD workflow recovers the time-lapse changes with 
a higher resolution and fewer artifacts than the PD strategy (Figure 10). The SI 
methodology provides acceptable accuracy for noise-contaminated data with 
moderate levels of noise.

Figure 10: Time-lapse parameter variations reconstructed by the source-independent algo- 
rithm using Wavelet 1. The parallel-difference method: (a) VP0, (b) VS0, and (c) ρ. The 
sequential-difference method: (d) VP0, (e) VS0, and (f) ρ.

Influence of geometry nonrepeatability

The geometries of the baseline and monitor surveys are seldom perfectly 
repeatable, even for ocean-bottom-node (OBN) surveys where the nodes are 
equipped with ROV (Remotely Operated Vehicle) devices. Preprocessing 
can reduce the impact of the geometry NR but it is difficult to eliminate it 
completely. To explore the influence of the geometry changes on 4D FWI, we 
move each source in the monitor survey up and to the right by 10 m. Due to this 
source displacement, the data difference exhibits changes near and after the first 
arrival, which are unrelated to the actual time-lapse anomalies (Figure 11b).

First, 4D FWI is applied using the actual acquisition geometries. Not 
surprisingly, the shift in the source positions does not significantly influence 
the reconstruction of the time- lapse changes with all three time-lapse strategies 
(Figures 12a-c) because the baseline and monitor inversions are performed with 
the actual geometries. Although the DD strategy operates on the data difference, 
the error caused by the geometry changes cancels out in equation 4.

(a)

(d)

(b)

(e)

(c)

(f)

SI

Figure 10: Time-lapse parameter variations reconstructed by the source-independent algo-
rithm using Wavelet 1. The parallel-difference method: (a) VP0, (b) VS0, and (c) ρ. The
sequential-difference method: (d) VP0, (e) VS0, and (f) ρ.
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Figure 11: Difference between the vertical particle-velocity components from the monitor 
and baseline surveys for: (a) the perfectly repeatable data (referred to as the actual differ- 
ence) and the data with (b) geometry nonrepeatability, (c) water velocity changes, and (d) 
overburden changes. The actual differences caused by the reservoir changes are circled in 
blue. The distortions caused by the nonrepeatability issues are marked by the red arrows.

Figure 12: Time-lapse variations of the velocity VP0 estimated from the data with geom- 
etry nonrepeatability. The results obtained with the actual acquisition geometries: (a) 
the parallel-difference method, (b) the sequential-difference method, and (c) the double- 
difference method. The results obtained using the baseline geometry in the inversion of 
both the baseline and monitor data: (d) the parallel-difference method, (e) the sequential- 
difference method, and (f) the double-difference method.

Next, to evaluate the influence of geometry errors on the reconstructed 4D 
parameter variations, the baseline data are inverted using the actual geometry, 
whereas the monitor inversion is performed with the geometry of the baseline 
survey. Figures 12d-f show that all three time-lapse strategies produce significant 
artifacts in the 4D results because of the time shifts between the observed and 

(a) (b)

(c) (d)

Figure 11: Difference between the vertical particle-velocity components from the monitor
and baseline surveys for: (a) the perfectly repeatable data (referred to as the actual differ-
ence) and the data with (b) geometry nonrepeatability, (c) water velocity changes, and (d)
overburden changes. The actual differences caused by the reservoir changes are circled in
blue. The distortions caused by the nonrepeatability issues are marked by the red arrows.
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Figure 12: Time-lapse variations of the velocity VP0 estimated from the data with geom-
etry nonrepeatability. The results obtained with the actual acquisition geometries: (a)
the parallel-difference method, (b) the sequential-difference method, and (c) the double-
difference method. The results obtained using the baseline geometry in the inversion of
both the baseline and monitor data: (d) the parallel-difference method, (e) the sequential-
difference method, and (f) the double-difference method.
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simulated monitor data caused by the geometry errors. In particularly, these 
time shifts lead to mispositioning of the reflectors due to the mismatch between 
these two data sets. Note that the PD strategy starts from a smoothed initial 
model (rather than the inverted baseline model) in the monitor inversion, which 
gives the model-updating algorithm more flexibility to misplace reflectors. 
Therefore, the parameter variations produced by the PD strategy (Figure 12d) 
are distorted more significantly by the geometry error compared to the two 
other strategies (Figures 12e and f), which agrees with the observation of Zhou 
and Lumley (2021b).

Influence of water statics

The water velocity may change between the baseline and monitor surveys, 
and the corre- sponding time shifts for some deep-water fields can reach 8 ms 
(Lecerf et al., 2022). Such “water statics” is often corrected by applying time 
shifts trace-by-trace before the inver- sion. However, those corrections may 
not be adequate for time-lapse FWI if the time-lapse parameter changes are 
relatively small (Borges et al., 2022). In the next test, we perturb the water 
velocity of the monitor model to generate time shifts up to 3 ms in the monitor 
data. Then both the baseline and monitor inversions are performed with the 
water velocity of the baseline model.

Figure 11c shows that the water velocity variations produce noticeable changes 
in the wavefields above the target area. Because of the incorrect water velocity 
for the monitor inversion, all three time-lapse strategies generate artifacts and 
underestimate the size of the reservoir and the amplitude of the parameter 
changes (Figure 13). Predictably, the parameters VP0 and ρ are distorted more 
than VS0 because there are no S-waves in the water. Similar to the geometry NR 
test above, the PD strategy yields the 4D results with the most artifacts. The SD 
and DD strategies produce comparable results, which indicates that these two 
approaches better handle moderate NR-related distortions.

Figure 13: Time-lapse parameter variations estimated from the data with “water statics.” The 
parallel-difference method: (a) VP0, (b) VS0, and (c) ρ. The sequential-difference method: (d) 
VP0, (e) VS0, and (f) ρ. The double-difference method: (g) VP0, (h) VS0, and (i) ρ.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Statics, 10%
Figure 13: Time-lapse parameter variations estimated from the data with “water statics.”
The parallel-difference method: (a) VP0, (b) VS0, and (c) ρ. The sequential-difference
method: (d) VP0, (e) VS0, and (f) ρ. The double-difference method: (g) VP0, (h) VS0, and
(i) ρ.
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Influence of overburden changes

Hydrocarbon production and CO2 injection reduce the pore pressure inside 
the reservoir, which causes stress changes in the surrounding rocks (e.g., Smith 
and Tsvankin, 2012; Holt et al., 2016). These overburden and underburden 
changes produce time shifts that con- tain useful information for reservoir 
monitoring (e.g., Smith and Tsvankin, 2013). Precise modeling of stress-related 
velocity variations is beyond the scope of this paper, so here we simulate such 
overburden changes by simply increasing the baseline velocities VP0 and VS0 
above the reservoir by up to 4% for the monitor survey (Figures 14a and b).

The influence of the overburden changes is visible in the difference between 
the monitor and baseline data (Figure 11d). Still, likely because the amplitude 
of the overburden veloc- ity changes is smaller than those in the reservoir, 
all three strategies are able to estimate the time-lapse variations in the 
reservoir and overburden with sufficient accuracy (Figure 14). Indeed, FWI is 
generally capable of reconstructing the entire model, although relatively large 
overburden anomalies could potentially mask those in the reservoir. Similar to 
the repeatability tests above, the DD strategy (Figures 14g and h) reconstructs 
the parameter changes with the highest resolution and fewest artifacts. This test 
also illustrates the sen- sitivity of our algorithm to relatively small changes in 
the overburden for input data with a relatively low noise level.

Figure 14: Time-lapse parameter variations for the data with overburden changes. The 
actual time-lapse variations in (a) VP0 and (b) VS0. The parameter variations estimated by the 
parallel-difference strategy [(c) VP0 and (d) VS0], the sequential-difference strategy [(e) VP0 
and (f) VS0], and the double-difference strategy [(g) VP0 and (h) VS0].Overburden-new

(a)

(c)

(e)

(b)

(d)

(f)

(g) (h)

Figure 14: Time-lapse parameter variations for the data with overburden changes. The
actual time-lapse variations in (a) VP0 and (b) VS0. The parameter variations estimated
by the parallel-difference strategy [(c) VP0 and (d) VS0], the sequential-difference strategy
[(e) VP0 and (f) VS0], and the double-difference strategy [(g) VP0 and (h) VS0].
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DISCUSSION

We have demonstrated the ability of the proposed TTI algorithm to reconstruct 
velocities and density simultaneously, even in the presence of moderate noise. 
However, the forward modeling algorithm used in the inversion is the same as 
the one that generated the “ob- served” data. In reality, the ability of the proposed 
multiparameter inversion to reconstruct the medium parameters limited by the 
adequacy of the input seismic data and the assumed physical model.

FWI is a local optimization problem in the data domain designed to reduce 
the misfit between the field and simulated data. Therefore, the events in the field 
data which can not be reproduced by the modelling algorithm (e.g., noise) will 
contribute to the loss function and hamper model updates. A high signal-to-noise 
ratio and dense spatial sampling are necessary for FWI to overcome artifacts 
and reconstruct high-wavenumber velocity details. Additional problems can 
be caused by the inability of the forward-modeling algorithm and the initial 
model to reproduce the wave propagation the subsurface. For example, we 
have shown that application of a VTI FWI code to “observed” data generated 
for a TTI model produces significant artifacts.

In addition to the challenges in 3D FWI, the successful application of 4D 
FWI requires the time-lapse workflow to be able to handle the nonrepeatability 
between the baseline and monitor surveys. By comparing the performance of 
three different time-lapse strategies, we observed that the parallel-difference 
strategy (PD) requires a particularly high level of consistency between the 
baseline and monitor surveys. The step-sharing technique introduced by Fu 
and Innanen (2023) might be useful to mitigate this issue with the PD strategy. 
Alternatively, “joint” inversion (Alemie and Sacchi, 2016), which updates the 
baseline and monitor models simultaneously, may also improve the PD results.

The sequential- (SD) and double-difference (DD) strategies are more 
robust in the presence of NR issues. However, we observed that SD requires 
an accurate estimate of the baseline model. Otherwise, the monitor inversion 
focuses on updating the baseline residual rather than the actual data difference, 
which is consistent with the conclusion of Asnaashari et al. (2015). DD, on the 
other hand, is more robust than SD because the composite data contain the data 
simulated for the baseline model. Note that the performance of the time- lapse 
strategies varies with the type and quality of seismic data, the accuracy of the 
initial model, subsurface complexity, the size of the reservoir, and the amplitude 
of the time-lapse changes. Therefore, in field applications, it is advisable to test 
these workflows on a subset of the data prior to processing the entire survey.

CONCLUSIONS

We extended the previously developed time-lapse FWI methodology from 
VTI to TTI media, which makes it suitable for a wide range of subsurface 
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structures. The algorithm is tested on the anticlinal section of the BP TTI model 
using three different time-lapse strategies: the parallel- (PD), sequential- (SD), 
and double-difference (DD) workflows.

If the baseline and monitor data are sufficiently repeatable, our algorithm 
reconstructs the time-lapse variations of the TTI parameters with high spatial 
resolution, even in the presence of moderate noise.

We also incorporated the source-independent (SI) technique into FWI to 
mitigate the influence of errors in the estimated source wavelet on FWI and, in 
particular, on the time-lapse results. The SI FWI algorithm proved capable of 
reconstructing 4D parameter changes with sufficient accuracy even for a strongly 
distorted wavelet and noisy data. Employed with the PD and SD strategies, the 
SI FWI algorithm can alleviate the source- wavelet nonrepeatability (NR) issue 
in field-data applications.

In addition, we analyzed the impact on time-lapse FWI of other common 
NR problems, such as geometry changes, water statics, and time-lapse velocity 
variations in the overbur- den. In the test with different source locations for the 
baseline and monitor surveys, the time-lapse FWI algorithm that operated with 
the actual acquisition geometries accurately estimated the 4D changes. Water 
statics was shown not to have a significant influence on the inverted parameter 
variations, unless the corresponding time shifts are comparable to those caused 
by the reservoir changes. If stress-induced velocity changes in the overburden 
do not dominate the time-lapse response, FWI is capable of resolving the 4D 
parameter variations in the entire model including the reservoir.
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