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ABSTRACT 

Seismic surveying represents an efficient and pivotal tool in the exploration of hydrocarbon 
reserves, consistently drawing the focus of the upstream oil and gas industries. Seismic 
inversion, one of the most critical methods for delving into the characteristics of subsurface 
geological layers, poses a formidable challenge.  In this study, we’ve departed from the 
conventional approach of merely enhancing or combining existing seismic inversion methods. 
Instead, we’ve employed a novel generative-adversarial network (GAN) algorithm, which 
is a deep learning algorithm, meticulously trained for the seismic inversion process. This 
innovative approach aims to omit several pressing challenges, including the computation 
of the inversion matrix, initialization of the wavelet, and navigating the constraints of the 
limited frequency band of seismic amplitudes in seismic inversion. This study has yielded 
remarkable results. Through the application of the generative-adversarial deep learning 
algorithm, we’ve not only conquered the aforementioned challenges but have also achieved 
exceptional quality and precision in our results. We conducted seismic inversion using 
real data from an oil field, achieving an impressive accuracy rate of 97.5%. This accuracy 
percentage is validated based on both the validation data and the mean squared error (MSE), 
reinforcing the robustness of the proposed approach. Furthermore, the acoustic impedance of 
the five test wells consistently measured below 0.125 units, highlighting the excellence of our 
outcomes. The correlation coefficient among these test wells ranged from a minimum of 96% to a 
maximum of 99%. In contrast, the acoustic impedances obtained through the band-limited method 
and the model base method displayed correlation coefficients of 71% and 83%, respectively. 
The utilization of the generative-adversarial algorithm in the inversion process underscores its 
contemporary efficiency. It holds the potential to entirely modernize and refine the conventional 
seismic inversion process, ushering in a new era of seismic exploration and inversion.

KEY WORDS: Seismic Inversion, generative-adversarial network (GAN) algorithm, Deep 
Learning, Seismic Exploration, Seismic Reservoir characterization
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INTRODUCTION 

The exploration for hydrocarbon reserves has been a driving force behind 
the evolution of geophysical techniques, particularly seismic methods (Russell, 
1988; Chopra & Marfurt, 2005). Accurately imaging and characterizing 
subsurface structures is pivotal in locating and assessing hydrocarbon reservoirs 
(King, 1992; Mallick, 1995). The foundation of seismic exploration was laid 
by seminal work in theoretical seismology. Researchers like Ludger Mintrop 
and Eckhardt conducted experiments involving artificial seismic sources, 
providing valuable insights into subsurface structures using explosives to 
generate seismic waves in 1949 (Mintrop, 1949; Sheriff & Gedart, 1995). The 
widespread adoption of reflection seismology gained impetus during the mid-
20th century due to significant advancements in digital recording equipment and 
the concurrent realization of its profound potential in facilitating the detailed 
imaging of subsurface geological structures, Notably, the seismic inversion 
process is inherently intricate and time-consuming, owing to the substantial 
volume of data required for its computations. Consequently, numerous 
challenges inevitably arise throughout the course of seismic inversion (Russell, 
1988; Yilmaz, 2001). Simultaneously, seismic inversion techniques began to 
emerge in response to the demand for quantitative subsurface information. 
Early inversion efforts, such as the limited band inversion method, sought to 
derive simple attributes like acoustic impedance from seismic data (Ferguson & 
Margrave;1996; Helgesen, et al., 2000; Maurya & Singh, 2017). As the journey 
of extensive research on seismic inversion persisted, it unveiled a series of novel 
methods, each distinguished by its unique attributes. The base and sparse spike 
model, which aimed to represent subsurface properties as a series of spikes 
in depth, marked a significant departure from linearized approximations (Ji, 
Yuan, & Wang, 2019;Kushwaha,et al., 2020). This method laid the foundation 
for modern seismic inversion approaches, incorporating the full wave equation 
and utilizing optimization techniques. The late 20th century and early 21st 
century saw a convergence of advanced computing power, sophisticated 
algorithms, and high-quality data acquisition systems. This synergy led to 
the development of 3D and 4D seismic surveys, allowing for the imaging of 
subsurface structures with unprecedented detail. Seismic inversion evolved 
alongside these advances, with techniques such as full-waveform inversion 
(FWI) gaining prominence (Virieux & Operto, 2009; Xu, etal., 2012 ; Lin, et 
al., 2023;Azizzadeh Mehmandost Olya, et al.,2024a).

As previously mentioned, multiple algorithms have been devised to 
delegate this task to computers. The critical consideration lies in the fact that 
these algorithms lack the capacity to learn or exhibit intelligent behavior. 
Consequently, their parameters necessitate manual adjustment for each 
instance by an operator. Additionally, when faced with challenges during the 
inversion process, these algorithms lack the ability to automatically resolve 
issues. Furthermore, it is important to note that certain conventional seismic 
inversion algorithms are susceptible to noise, which leads to the propagation 
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of errors throughout the inversion process (Gogoi & Chatterjee, 2019; Zhang, 
et al,. 2023; Lin et al., 2023). Owing to their remarkable capabilities, deep 
learning algorithms present a highly promising avenue for the implementation 
of intelligent techniques in seismic inversion. These sophisticated algorithms 
hold the potential to revolutionize the entire seismic inversion process. Deep 
learning has garnered increasing popularity in recent years for its remarkable 
capabilities when applied to the exploration of hydrocarbon reserves (Bagheri, 
et al; 2024;Moradi Chaleshtori,et al.,2024 ;Bahramali Asadi Kelishami & 
Mohebian, 2021;Mohebian, et al.,2021). This cutting-edge technology is 
revolutionizing the way we approach the task of identifying and assessing these 
valuable natural resources. Its rising prominence can be attributed to several 
key factors ( Zhu, et al., 2022).

Firstly, deep learning algorithms excel at processing vast and complex 
datasets, a critical requirement in the subject of hydrocarbon exploration. 
With the ability to analyze seismic data, geological formations, and subsurface 
conditions with unprecedented accuracy, deep learning enhances our capacity to 
pinpoint potential reserves and predict their viability (Azizzadeh Mehmandost 
Olya,et al., 2024b ; Rajabi, et al., 2019). Secondly, the adaptability of deep 
learning models makes them invaluable in tackling the inherent challenges 
of hydrocarbon exploration. These algorithms can continuously evolve and 
improve their predictive capabilities as they learn from new data, making them 
highly efficient in adapting to evolving geological conditions and exploration 
techniques (Geng & Wang, 2020; Habibullah, et al., 2020). Within the realm of 
hydrocarbon reserve exploration (Azizzadeh Mehmandost Olya & Mohebian, 
2023a) and the intricate analysis of seismic recordings, deep learning algorithms 
have garnered extensive utilization, underscoring the distinctive prominence of 
this algorithmic category (Azizzadeh Mehmandost Olya & Mohebian, 2023b).  

In this paper, we employed the Cyclic generative adversarial network (GAN) 
deep learning algorithm. This algorithm represents a cutting-edge approach, 
distinguished by its unique capabilities. Its inception dates back to 2014, 
credited to Ian Goodfellow (Goodfellow, et al., 2014). Presently, the algorithm 
boasts several distinct architectures, signifying its ongoing developmental 
trajectory. The primary impetus behind the creation of this algorithm has been 
the generation of lifelike images. Remarkably, this algorithm has the capacity 
to fashion images previously nonexistent, subsequent to undergoing multiple 
rounds of training and exposure to diverse visual stimuli (Frank, et al., 2020). 
As this algorithm matured, Xu and his colleagues successfully adapted it to 
tabular data in 2019, thereby underscoring its versatility beyond image data 
(Xu, et al., 2019). Subsequently, in 2020, Liu and his research team achieved 
a remarkable feat by employing the GAN algorithm to construct a model for 
weather estimation and forecasting. This accomplishment underscores the 
algorithm’s extraordinary computational prowess (Liu & Lee, 2020). Within 
this article, we harnessed the GAN algorithm to produce sonic and density logs, 
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facilitating seismic inversion through a novel approach. Notably, this approach 
not only circumvents the typical challenges posed by conventional methods but 
also enhances accuracy and expedites the process significantly.

METHODOLOGY

The GAN is a sophisticated deep-learning algorithm that offers various 
variants tailored for specific purposes. In this article, we employ the cyclic 
variant and will proceed to elucidate its architecture (Creswell, et al., 2018; 
Aggarwal, et al., 2021).

Algorithm Architecture

The GAN algorithm essentially comprises two distinct sub-networks that 
operate concurrently. This interplay between the two sub-networks facilitates 
a more precise training of the desired models and commands (Gui et al., 
2021). A fitting analogy to elucidate this algorithm is that of a counterfeiter 
and a detective. In a hypothetical mental realm, the counterfeiter strives to 
craft the most convincing counterfeit money, while the detective endeavors to 
discern counterfeit money from genuine currency. Through a communication 
channel, the detective informs the counterfeiter whether the counterfeit money 
has been identified. If the counterfeit money is detected, it indicates that the 
counterfeiter requires further refinement in their craft, and the detective is 
effectively performing their role. Conversely, if the detective fails to accurately 
distinguish the counterfeit money, it implies a need for more training on their 
part. Ultimately, the optimal state is achieved when the counterfeiter cannot 
enhance the similarity of their counterfeit money to real money any further, 
and the detective cannot differentiate the counterfeit money from genuine 
currency due to their closely matched characteristics. The example presented 
essentially illustrates two core sub-networks: the generative and the adversarial. 
The generative network enhances the accuracy of its outcomes by creating 
requested samples and forwarding them to the adversarial network, which in 
turn endeavors to identify errors within the transmitted samples. Furthermore, 
within the framework of this generative network algorithm, the network strives 
to learn the underlying concepts of the specified subject. This dynamic signifies 
that the network possesses the capability to generate authentic data that 
previously had no existence (Karras, et al., 2020). In figure 1, we have depicted 
a simplified flowchart of the GAN algorithm. This flowchart illustrates what we 
mentioned earlier, specifically the relationship between the generative subnet 
and the adversarial subnet. In this figure, we can observe that when the data 
generated by the generating sub-network conflicts with reality, the adversarial 
network prompts for the regeneration of the data.



5

Figure 1—Simplified flowchart of GAN algorithm

Sub-Networks

The diversity of algorithms in GAN sub-networks depends on their goals, 
and the choice of algorithms is crucial for effective learning. In this article, we 
used fully connected neural networks for both the generative and adversarial 
sub-networks. The generator network utilized the Rectified Linear Unit (ReLU) 
activation function to emphasize nonlinear relationships.

This variety of algorithms in GAN sub-networks allows for a tailored 
approach, enabling customization for specific tasks. Our use of fully connected 
neural networks in both sub-networks supports comprehensive information 
exchange within the model’s architecture. Integrating the ReLU activation 
function into the generator network enhances the model’s ability to capture 
complex data patterns.

The careful selection of algorithms reflects the meticulous design in GANs, 
where the synergy between components significantly influences the system’s 
performance. Before discussing the loss functions governing these sub-
networks, it’s essential to understand the concept of Nash equilibrium, a crucial 
foundation for comprehending convergence in responses.

Nash Equilibrium

Nash Equilibrium, a foundational concept in game theory, is a state in which 
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each participant’s strategy is optimal, given the strategies chosen by all other 
participants. Mathematically, in a strategic interaction involving multiple 
players, let’s denote the strategy of player (i) as , and the set of strategies of 
all players except (i) as  The payoff to player (i) for playing strategy  while 
others play strategies from  is denoted as  ( , ). A Nash Equilibrium is 
reached when no player has an incentive to unilaterally change their strategy, 
i.e., for all players (i) the following condition holds:

 ( , ) >  ( , )               (1)

for all possible alternative strategies of player (i) and all combinations of 
strategies  of other players. In simple terms, each player’s strategy is the best 
response to the strategies of others.

In the context of Generative Adversarial Networks (GANs), the concept of 
Nash Equilibrium manifests intriguingly. GANs consist of two primary sub-
networks: the generator and the discriminator. The generator creates data 
instances, while the discriminator (Adversarial) evaluates whether a given 
instance is real (from the actual data distribution) or fake (generated by the 
generator). This interaction resembles a game between the generator and 
discriminator. The generator seeks to generate data that the discriminator cannot 
easily differentiate from real data, while the discriminator aims to accurately 
classify real from fake data.

Mathematically, the discriminator’s strategy involves producing an optimal 
decision boundary, and the generator’s strategy entails creating data that can 
effectively deceive the discriminator. The equilibrium in this context is the state 
in which the generator produces data that is so realistic that the discriminator 
can’t distinguish it from real data, while the discriminator’s classification 
accuracy remains around 50%, as it cannot confidently discern between the 
two.

Achieving Nash Equilibrium in GANs is a non-trivial task. If the generator 
becomes too adept, the discriminator might falter in improving its own 
accuracy, and vice versa. This tug-of-war often leads to oscillations in training 
and convergence challenges. Researchers have developed various strategies to 
stabilize training, like introducing mini-max game formulations and adjusting 
learning rates.

Loss function

The core of GANs lies in the intricate interplay between two neural 
networks: the generator and the discriminator. This interaction is orchestrated 
by meticulously designed loss functions that drive the training process, leading 
to the convergence of these networks.

•	 Generator Loss: The generator’s primary objective is to create data 
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samples that are indistinguishable from real data. To achieve this, the generator 
loss function encourages the generator to produce data that the discriminator 
misclassifies as real. Mathematically, the generator loss ( ) is given by the 
negative logarithm of the discriminator’s probability of correctly identifying 
generated data as fake ( where  represents the 
generator’s output given noise input .

•	 Discriminator Loss: The discriminator aims to accurately differentiate 
between real and generated data. Its loss function ( ) is devised to maximize 
its ability to discriminate. It consists of two components: the negative logarithm 
of the discriminator’s probability of correctly classifying real data as real 

 and the negative logarithm of the discriminator’s probability of 
incorrectly classifying generated data as real ( ).

•	 Adversarial Minimax Game: GAN training can be viewed as a two-
player minimax game, where the generator and discriminator are adversaries. 
The generator’s goal is to minimize its loss while the discriminator aims to 
maximize its loss. This adversarial objective is mathematically expressed as 

.

•	 Equilibrium and Nash Equilibrium: The equilibrium of this adversarial 
game occurs when both the generator and discriminator reach a point where 
neither can improve by unilaterally changing its strategy. This equilibrium is 
akin to a Nash equilibrium in game theory, where the generator produces data 
that is realistically mistaken for real by the discriminator.

Seismic inversion process with GAN algorithm 

Seismic inversion stands as one of the paramount methodologies for 
exploring hydrocarbon reserves and subterranean water sources. Nonetheless, 
conventional techniques like the limited band and the model-based methods 
confront an array of fundamental challenges. These challenges encompass 
wavelet extraction, constraints on data bandwidth, intricate matrix calculations 
(ill-condition matrix), and the omnipresent issue of data noise.

In this paper, we introduce a novel approach to seismic inversion aimed 
at circumventing these obstacles. Our chosen approach employs the GAN 
algorithm. In stark contrast to prior methods that sought to extract acoustic 
impedance from seismic traces, our approach involves the creation of acoustic 
impedance directly from these traces. In essence, at each location where a seismic 
trace is present, we obtain two logs which are a density log and a sonic log. This 
innovative technique eliminates the need for wavelet generation via diverse 
statistical methods. Moreover, it obviates the reliance on matrix inversion for 
seismic inversion, thereby sidestepping the associated matrix inversion issues.

Furthermore, the unique capabilities of the GAN algorithm afford us the 
added advantage of mitigating noise effects during the inversion process. 
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Consequently, this approach represents a promising breakthrough in the field 
of seismic inversion, addressing key challenges and enhancing the precision of 
hydrocarbon reserve and underground water source exploration.

In Figure 2, a meticulously detailed flowchart unfolds, a visual representation 
of the primary methodologies and key processes that underpin this article’s 
pursuit of seismic inversion has been provided. The integration of the GAN 
algorithm into the seismic inversion framework is made explicit through this 
visual exposition, offering readers a deeper understanding of the intricate steps 
involved in this innovative approach. In the upcoming section, our objective 
is to provide a comprehensive elucidation of the distinct elements comprising 
this intricate flowchart. Through a detailed breakdown of each component, we 
aim to offer a clear and thorough understanding of the visual representation 
presented herein.

Figure 2—Flowchart of seismic inversion by GAN algorithm
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Data preparation

We use two primary data categories in this approach: seismic data and well 
log data. Python is our chosen programming language due to its open-source 
nature and its capability to handle complex deep-learning algorithms.

During the initial stages of this article, retrieving seismic and well data is 
crucial. Given the significant volume of seismic data, we implement a data 
batching technique. This technique serves a dual purpose: it reduces the number 
of data packets sent to the graphics processing unit and the primary code 
kernel, thereby preventing potential memory overflow in the computer. This 
process is part of the “Data preparation” section. Table 1 presents a pseudocode 
that thoroughly explains the data batching process, providing insights into the 
systematic steps for efficient organization and processing of data in discrete 
segments.

Table 1—Batching pseudocode

function batch_large_file(input_file_path, output_directory, chunk_size)
    if not exists(output_directory)
        create_directory(output_directory)

    input_file = open (input_file_path, 'read_binary')
    chunk_number = 1

    while True
        chunk_data = read_chunk(input_file, chunk_size)
        if chunk_data is empty
            break

        output_file_path = create_output_file_path(output_directory, chunk_number)
        output_file = open (output_file_path, 'write_binary')
        write_chunk(output_file, chunk_data)
        close(output_file)

        increment(chunk_number)

    close(input_file)

if __name__ == "__main__"
    input_file_path = "path/to/your/large/file.dat"
    output_directory = "path/to/output/directory"
    batch_large_file(input_file_path, output_directory)

Another crucial consideration is the unique formatting of seismic data 
files (SGY format) and well-log data files (LAS format). These files undergo 
a sophisticated encryption process that significantly reduces the storage 
requirements for seismic and well-log data. As a result, conventional methods 
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for accessing these files are ineffective. To overcome this encryption challenge 
and access the valuable seismic and well-logging datasets, we developed 
a specialized pseudocode tailored to the distinct encryption methods and 
characteristics of SGY and LAS files. Table 2 provides this pseudocode, serving 
as a vital link between the intricate data encryption and our analytical processes.

 Table 2—opening file algorithm

Procedure: Open SGY Seismic Data and LAS Well Logging Files

Input:
  - sgy_file_path: The path to the SGY seismic data file
  - las_file_path: The path to the LAS well logging file

Output:
  - seismic_data: The seismic data loaded from the SGY file
  - well_log_data: The well logging data loaded from the LAS file

1. Specify the path to the SGY seismic data file as sgy_file_path.
   Specify the path to the LAS well logging file as las_file_path.

2. Load the SGY file using the sgysak package:
   - Initialize seismic_data as an empty variable.
   - Use the sgysak package to read the SGY file located at sgy_file_path and store the data 
in seismic_data.

3. Access header information and seismic trace data if needed:
   - Extract header information from seismic_data.header.
   - Extract seismic trace data from seismic_data.traces.

4. Load the LAS file using the lasio package:
   - Initialize well_log_data as an empty variable.
   - Use the lasio package to read the LAS file located at las_file_path and store the data in 
well_log_data.

5. Access header information and well log data if needed:
   - Extract header information from well_log_data.header.
   - Extract well log data (curves) from well_log_data.data.

6. End the procedure.

Petrophysical corrections

Upon gaining access to the dataset, a critical task emerges: the isolation of 
seismic trace data closely associated with the existing wells. To execute this 
task with precision, we initiated the process by acquiring accurate geographical 
coordinates for each wells. Using this geographical data, we then meticulously 
delineated and separated the seismic traces that corresponded to the wells 
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in closest proximity within the expansive seismic dataset. This meticulous 
approach ensures that our subsequent analyses and computations are grounded 
in the most relevant and contextually significant data points.

Following the extraction of seismic trace data closest to point of interest, 
our focus shifts towards the crucial task of refining the well log data from a 
petrophysical perspective. In this study, we have exclusively harnessed sonic 
and density logs as our primary sources, opting not to directly incorporate other 
logs types into our analysis. We recognize that the post-drilling conditions 
within wells are subject to variability and instability. Factors such as localized 
wall collapses or the potential intrusion of drilling mud can introduce significant 
irregularities into the well’s internal structure. Consequently, during the 
deployment of well logging tools, we often contend with the complexity of a 
non-uniform well wall.

Moreover, each well logging tool necessitates specific adjustments. For 
example, when dealing with the sonic log, a critical petrophysical correction 
known as the “double circulation correction of sound waves,” or simply 
“d-spike,” takes center stage. This correction serves to eliminate aberrations 
associated with acoustic double circulation, effectively smoothing out the 
recorded log data and rendering it more coherent and scientifically sound.

As mentioned earlier, the propensity for well wall collapses is a genuine 
concern. In instances where such incidents occur, the well log data obtained in 
proximity to the compromised well wall loses its validity. To tackle this issue 
head-on, we have meticulously purged the dataset of values originating from 
regions adjacent to the affected well wall. To bridge the ensuing data gaps, 
we’ve employed a rigorous averaging technique, thus ensuring the continuity 
and integrity of the dataset.

Yet another formidable challenge revolves around the disparity in depth 
alignment across various well logging datasets. This means that values 
corresponding to a specific geological layer may exhibit variations in depth 
measurements. To mitigate this misalignment, we’ve adopted the gamma ray 
log as a reference point. This reference serves as the essential for our efforts 
to harmonize the depth measurements across all logs, effectively resolving the 
issue of depth mismatch and enhancing data consistency for our comprehensive 
analysis.

Backus algorithm for upscaling

After the meticulous correction of petrophysics log data and the meticulous 
separation from the closest trace to the well data, we confront one of the most 
pivotal challenges in our quest for data alignment and synergy. It’s essential to 
recognize that well logging devices diligently record data points at an interval 
of 0.1524 meters, whereas seismic sampling captures data at substantially 
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wider intervals. Consequently, connecting these two disparate data streams 
necessitates a concerted effort. Before we embark on this endeavor, it becomes 
imperative to address the fundamental issue of scale discrepancy between 
well logging and seismic data. The wellbore data is inherently expressed in 
meters, whereas seismic data is inherently associated with milliseconds. To tie 
this divide and establish a common scale, we rely on the invaluable resource 
of check shot data. Check shot data serves as the linchpin in harmonizing 
these distinct scales, allowing for seamless conversion between the meter and 
millisecond domains with precision. Our overarching objective, which is to 
perform a seismic data inversion, hinges on the seamless alignment achieved 
through this process. To obtain well data that aligns with the seismic scale, we 
employ a carefully crafted formula, meticulously derived from curve fitting to 
the check shot data (as depicted in Figure 3). This formula serves as a bridge 
that ensures our seismic data inversion efforts are underpinned by accurate and 
synchronized borehole data.

Figure 3—Curve fitting on check shot data

Following the successful utilization of check shot data to effectuate the 
conversion of borehole data from “meters” to “milliseconds,” our next 
imperative lies in establishing a seamless connection between this transformed 
borehole data and the seismic dataset. To achieve this, we turn to an ingenious 
method introduced by George Backus back in 1962, known as the Backus mean 
(Backus, 1962).

The Backus mean method provides us with a powerful framework for 
establishing the crucial link between well log data and seismic data. It offers 
a systematic approach through which these two disparate datasets can be 
meaningfully related and analyzed. This method serves as a vital bridge that 
facilitates the fusion of well log data and seismic data, ultimately enhancing our 
ability to interpret and inversion seismic data (Figure 4).
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Figure 4—Backus mean

Within the framework of the Backus algorithm, a crucial parameter known 
as the Landa value defines the temporal extent of the window within which 
well data becomes intimately integrated and correlated with seismic data. 
This window’s length is intrinsically tied to the temporal characteristics of the 
recorded seismic data. To illustrate, if there is a 2.5-millisecond gap between 
each recorded seismic domain, the corresponding window length will precisely 
mirror this 2.5-millisecond interval.

This meticulous synchronization between the seismic data’s recording 
time intervals and the Landa value underpins the algorithm’s effectiveness. 
Moreover, the conversion of well-logging data into the “milliseconds” scale 
facilitates a harmonious fit within this window. This harmonization ensures that 
the window operates seamlessly, enabling the precise alignment and association 
of well data with its seismic counterpart.

Calibrating the scale of seismic and well data

In the previous section, we discussed the working method of Backus 
averaging. It’s important to note that one of the challenges associated with this 
averaging technique is the lack of accurate matching between the time domains 
of well data and seismic data. This discrepancy can be observed in Table 3.

Table 3—The Non-Uniformity of Time Domains of Well and Seismic Data

Well Time Domain (milliseconds) Seismic Data Time Domain 
(milliseconds)

102.262
102.473
102.658

100.508
104.221
107.207
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As seen, there is an incomplete match between the seismic amplitudes and 
the well data due to various factors, including environmental conditions and 
device accuracy. To address this challenge, we implemented a calibration 
process that aligns the well’s time domain with the seismic data. Here’s a step-
by-step description of the process:

1. Initially, we select the closest seismic trace to the well being investigated 
as the reference data.

2. Next, we calculate the difference between all seismic trace time domains 
and the well data time domains.

3. The data pair with the smallest difference is chosen as the reference time 
point.

4. We adjust the time domain within the well logging data based on the 
difference between the well and seismic time domains.

5. We recalculate the time difference between the seismic trace and the updated 
well logging time domain. Notably, the previously calculated and adjusted data 
pairs remain fixed, while only the well’s time domain is updated. This ensures 
accurate recording of seismic amplitudes at layer boundaries during processes 
such as “Z crossing” or “S crossing.”

6. In this step, we add or subtract a quarter of the calculated difference to the 
well logging time domain. This approach prevents unrealistic adjustments that 
could occur if the entire difference were applied across the entire range of well 
logging data simultaneously.

7. We repeat this process until no pair of time-domain seismic and well log 
data can be further optimized.

Through this iterative process, the difference between the well data’s time 
domain and the seismic acquisition time domain is minimized, leading to more 
accurate results after Backus averaging

Data classification algorithm 

Within the scope of this research endeavor, our data set comprises a total 
of 15 wells and a singular seismic cube. For our analysis and evaluation, we 
segregated 5 wells from the dataset, selected based on their distinct dispersion 
characteristics, earmarking them for use in our testing phase. The remaining 10 
wells were designated as training data.

Crucially, the effective training of algorithm necessitates the meticulous 
classification and arrangement of these data points in conjunction with the 
data from the closest seismic trace. This approach ensures that, during the 
algorithm’s training phase, each data point is thoughtfully aligned with similar 
data, enhancing the learning process.
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To achieve this goal, we employed a well data sorting algorithm in tandem 
with the closest seismic trace information. This meticulous sorting process 
serves as the foundation for constructing a training feed for both the generator 
sub-networks and the adversarial sub-network. By organizing the data in 
this manner, we optimize the algorithm’s capacity to recognize patterns, 
relationships, and nuances, ultimately leading to more robust and accurate 
results in our exploration and analysis.

GAN algorithm for seismic inversion

In contrast to traditional seismic inversion methods, this research takes a 
unique approach by directly performing inversion operations on seismic traces 
without the need to extract wavelet or intermediate operator information 
beforehand. We’ve already detailed the meticulous data preparation steps for this 
study. Now, let’s delve into the subsequent phase, where we send this carefully 
prepared data into two essential sub-networks: the generator sub-network and 
the adversarial sub-network. The generator sub-network has the challenging 
task of learning and deciphering the intricate relationship between well data 
and their nearest seismic trace counterparts. It serves as the creative force 
behind generating synthetic models. On the other hand, the adversarial sub-
network acts as the discerning critic, tasked with distinguishing between these 
synthetic models and the authentic ones derived from real data. Essentially, the 
adversarial sub-network works to refine and enhance the generative algorithm by 
progressively recognizing the subtle discrepancies and shortcomings inherent 
in the synthetic models produced by the generative sub-network. This iterative 
process continues until the adversarial algorithm achieves the remarkable 
ability to discern synthetic models from genuine ones, driving the generative 
algorithm to produce increasingly accurate and realistic models.

This dynamic interplay between the generative and adversarial sub-networks 
forms the core of our innovative approach to seismic inversion, promising 
to advance the boundaries of accuracy and realism in model generation and 
data interpretation. Now, let’s discuss the loss function for the GAN, which 
comprises two components ;the generator loss and the discriminator loss. GANs 
are employed in semi-supervised deep learning to train a generator network (G) 
and a discriminator network (D) simultaneously. The primary objective is for 
the generator to produce data that is indistinguishable from real data, while the 
discriminator aims to differentiate between real and generated data. Here’s the 
mathematical representation of the GAN loss function:

1. Discriminator Loss ):

The discriminator’s loss measures its ability to distinguish between real and 
generated data.
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            (2)

Where represents the probability assigned by the discriminator to 
real data being real.  signifies the probability assigned by the 
discriminator to generated data being real.  

The discriminator’s goal is to maximize , meaning it aims to correctly 
classify real data as real ( close to 1) and generate data as fake (

close to 0).

2. Generator Loss ( ):

The generator’s loss measures how effectively it can deceive the discriminator.

                  (3)

The generator’s objective is to minimize , implying that it strives to 
generate data so convincing that the discriminator assigns a high probability to 
it being real ( close to 1).

In practice, GAN training involves alternating between optimizing the 
discriminator and the generator by minimizing their respective loss functions. 
The generator seeks to enhance its ability to generate realistic data, while 
the discriminator aims to improve its ability to distinguish between real and 
generated data. The overall GAN loss is typically represented as the sum of the 
discriminator loss and the generator loss:

                 (4)

The GAN training process aims to achieve a Nash equilibrium between the 
generator and the discriminator, where the generator produces realistic data, 
and the discriminator cannot reliably distinguish between real and generated 
data. This equilibrium is reached through iterative training, with both networks 
continuously improving their performance. Within the realm of GANs, a crucial 
component is the data classifier algorithm. Its primary role is to ensure the 
precise alignment of well data and seismic traces, forming the foundation for 
the GAN process.

Once alignment is established, the data classifier algorithm acts as a conduit, 
providing both well log and seismic trace data to the generative algorithm 
for training. Simultaneously, it supplies the same dataset to the adversarial 
algorithm, setting the stage for a dynamic “minmax game.” In this intricate 
interplay, the generator algorithm generates genuine data, while the adversary 
algorithm scrutinizes its authenticity. To address the risk of overfitting, a 
proactive approach is employed. An algorithm is meticulously designed 
to prevent overfitting by controlling the neural elements of the generating 
network, ensuring that all neurons do not converge towards optimization within 
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a single epoch. This measure enhances the algorithm’s robustness. The training 
process continues until the error metrics between the adversarial and generative 
algorithms stabilize, making neither algorithm the clear victor. Subsequently, 
armed with detailed information about each seismic trace, the generator 
algorithm generates density, and sonic logs. This results in a comprehensive 
dataset encompassing sonic logs and acoustic impedance profiles at the precise 
geographic coordinates of each seismic trace.

This marks the culmination of the inversion process, a complex endeavor 
that underpins seismic data interpretation and modeling. The GAN algorithm’s 
capability to not only generate data but also modify existing data sets it apart 
from other deep learning methods. The GAN framework, with its interplay of 
algorithms, represents a sophisticated and innovative approach that advances 
the boundaries of data generation, interpretation, and modeling within the realm 
of seismic analysis and beyond.

The GAN algorithm developed for seismic inversion is a sophisticated 
approach employing a fully connected neural network. Within the generative 
subnet, there are three layers, each with 1500 neurons. This specific configuration 
was carefully chosen to handle the inherent complexity of seismic data, and 
it went through extensive trial and error to capture the intricate patterns and 
nuances present in the data effectively.

In the context of this research, the choice of the Rectified Linear Unit (ReLU) 
activation function for the generative algorithm is particularly noteworthy. 
This decision was motivated by its demonstrated ability to seamlessly align 
with seismic data characteristics, as evidenced by findings from Wang et al. 
(Wang, et al , 2022) This activation function plays a pivotal role in shaping 
the network’s ability to extract meaningful features from the data, thereby 
enhancing the quality and accuracy of the generated results.

To understand the GAN algorithm’s inner workings, we’ll outline its key 
stages. The algorithm begins with “Input Gathering,” where it collects necessary 
input parameters and data. This stage sets the groundwork. Next is “Generator 
Model Creation,” where the algorithm constructs the generative model, taking 
into account the gathered input. This shapes the algorithm’s capabilities. 
Following this, the algorithm moves to “Layer Specification,” where it defines 
the network’s architecture by specifying layer shapes and dimensions. These 
specifications are crucial for the model’s effective functioning. After this, 
we have “Layer Creation,” where the individual layers within the network 
are brought to life, aligning with the intended design. Moving forward, the 
algorithm focuses on “Input Integration,” harmoniously merging inputs from 
various layers to facilitate data flow. It then “Adds Connected Layers,” fostering 
synergy between layers for collective processing of input data. The chosen 
activation function, ReLU, introduces non-linearity, enhancing the network’s 
ability to capture complex patterns in the data.
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The number of layers doesn’t follow a fixed pattern; it’s “Iterative Layer 
Addition,” ensuring adaptability to data intricacies. The algorithm reaches 
“Output Layer Definition” to specify the output layer, aligned with research 
objectives. Incorporating this layer finalizes the network’s architecture, ensuring 
the model’s output aligns with the research goals.

The result of these steps is the “Final Generative Model,” encompassing both 
input and output layers. The process concludes with “Returning the Generator 
Model,” delivering a fully equipped generative model, ready to generate 
valuable seismic inversion results.

The ReLU activation function, known for its simplicity and effectiveness, 
introduces non-linearity into neural networks. It efficiently models complex data 
relationships, making it suitable for applications like seismic inversion, where 
it excels in capturing intricate data patterns. ReLU is a non-linear activation 
function that introduces non-linearity into the neural network. Unlike some 
other activation functions like the sigmoid or hyperbolic tangent (tanh), ReLU 
has a simple mathematical formulation: it outputs the input value if it’s positive 
and outputs zero if it’s negative (Figure 5).

Figure 5—ReLU activation function

In this research, the adversarial algorithm has been designed with the specific 
goal of estimating data from sonic and density logs. Within this algorithm, 
we employed a neural network architecture comprising three fully connected 
layers. The first layer consists of 512 neurons, the second layer is equipped with 
256 neurons, and the final layer is a single neuron.

 This approach was chosen to train the Adversarial algorithm 
effectively, aligning it with the precise requirements of estimating data from 
acoustic and density borehole logs. The neural network’s architecture, with its 
layered structure and varying neuron counts, is meticulously crafted to capture 
and interpret the intricate patterns and relationships present in the data. This 
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design allows the algorithm to distill meaningful insights and deliver accurate 
estimates, ultimately enhancing the quality of results in the context of well log 
analysis.

In the preceding sections, we provided a comprehensive overview of the 
objective functions employed in the generative-adversarial algorithm. In this 
section, our focus shifts to the examination of the objective function tailored 
specifically for seismic inversion. Broadly, the proposed approach encompasses 
two distinct objective functions: one dedicated to the generative algorithm and 
another associated with the inversion algorithm.

Within the framework of the generative algorithm, we encounter a nuanced 
process designed to mitigate errors and streamline computational efficiency. 
This process aims to prevent the simultaneous, unsupervised input of both 
acoustic and density images into the adversarial network, thereby managing 
the computational load and minimizing processing time. Initially, this involves 
error computation through the generation of a profile, achieved by leveraging 
the closest seismic data points to the well, along with sonic and density well 
log data. The following equation exemplifies the initial step, where the first 
sonic and density logs (acoustic impedance) are derived from the profiles of the 
corresponding well and the nearest seismic trace to the well.

               (5)

Upon the successful completion of the initial cycle for generating well 
data, the second objective function comes into play. This objective function 
is dedicated to the task of reconstructing well data utilizing seismic data. In 
essence, it initiates a local inversion process, and the subsequent equation 
illustrates this particular cycle.

             (6)

In the equations presented above, two critical weight functions are denoted: 
representing the local inverse model, and , symbolizing the forward 

modeling process. The variable (T) stands as the seismic data, signifying the 
data originating from the seismic range nearest to the well. Within the equation 
framework, the symbol (P) denotes a function, with its index representing either 
the weight function of the local inverse model or the forward modeling process. 
It is essential to note that  and  correspond to high-frequency and low-
frequency acoustic impedance data, respectively. These acoustic impedance 
values result from the analysis of sonic and density logs, where Fourier series 
is instrumental in their separation.

  The rationale behind segregating these two datasets, rather than 
combining them, and presenting them individually to the algorithm lies in the 
pursuit of heightened accuracy and spatial resolution. We amalgamated the 
datasets, and the inherently diverse nature of high-frequency data in the density 
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and sonic log would have significantly marginalized the contribution of low-
frequency data in computational calculations.

The loss function within the adversarial algorithm is:

          (7)

In all of the relationships mentioned above, the variable (T) signifies seismic 
data from locations other than those in close proximity to the well. Conversely, 

 is used to denote seismic data collected near the well. It’s worth noting that 
 pertains to the weight functions employed within the cleaning algorithm. 

This clarification distinguishes between the two datasets represented by T and 
and highlights the significance of the weight functions encapsulated within 

the cleaning algorithm.

RESULTS AND DISCUSSION

We had a total of 15 wells at our disposal, out of which 10 were dedicated 
to the training of GAN algorithm. The remaining quintet served as test data 
repositories, essential for gauging the algorithm’s performance. It’s imperative 
to underscore that each training well, along with its closest seismic trace, 
contributed 80% of its data to the training process, while the remaining 20% 
played a pivotal role in the validation phase. This validation procedure was 
seamlessly integrated into the algorithm’s ongoing training regimen.

The convergence validation values generated by the algorithm provide a 
clear and quantitative reflection of its accuracy. These values, in addition to 
acting as a barometer of precision, serve as a built-in mechanism for terminating 
the training process. Essentially, the algorithm’s training continues until the 
validation loss function values exhibit no further significant changes. When the 
algorithm reaches a juncture where it can no longer reduce this loss function, 
the training process gracefully concludes.

The context of our research, the algorithm achieved a remarkable validation 
of the loss function after an exhaustive 3873 rounds of training, yielding a 
minimal loss value of 0.025. This feat underscores the algorithm’s exceptional 
accuracy, which translates to an impressive 0.975.

For a visual representation of the algorithm’s dynamic performance 
throughout each training round, please refer to Figures 6 and 7. These figures 
vividly illustrate the fluctuations in the loss function and the accuracy of the 
algorithm during its training iterations.

Notably, it’s worth mentioning that the training process for this algorithm 
spanned a duration of 20 hours, 48 minutes, and 27 seconds using a core i9 12900E 
system of 32GB RAM. This timeframe holds significant merit, especially when 
considering the substantial volume of data involved. One contributing factor 
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to this efficiency is the utilization of the computer’s graphics processing unit 
(GPU) for algorithmic computations, as opposed to relying solely on the central 
processing unit (CPU). Nevertheless, it’s crucial to acknowledge that hardware 
specifications can exert a considerable influence on the duration of the training 
process. Additionally, the process of batching data, while necessary, introduces 
a delay as information is progressively transmitted to the algorithm’s processing 
unit or kernel, which can affect overall processing time. 

Figure 6—Validation loss per Epoch

Figure 7—Precision per Epoch

One effective approach to gaining deeper insights into the algorithm’s 
performance is through the examination and interpretation of its output graphs. 
The generative-adversarial algorithm stands as one of the most intricate and 
sophisticated entities in the realm of artificial intelligence. Consequently, 
deciphering the nuances presented in its output graphs serves as a crucial logbook, 
enabling us to develop a deeper understanding of its intricate subcomponents.



22

To facilitate this understanding, we turn our attention to the validation 
loss function, which serves as a powerful lens through which to scrutinize 
the algorithm’s learning process. Figure 8, thoughtfully divided into three 
distinct sections based on the graph’s slope, offers a comprehensive view of the 
algorithm’s evolution.

Figure 8—Segmented Validation loss chart

In the initial segment, the graph exhibits a subtle and gradual change in slope. 
Here, the generative algorithm is in the midst of its learning journey, skillfully 
crafting and generating sound resistance logs. Concurrently, the adversarial 
algorithm excels at distinguishing erroneous data from accurate ones with 
remarkable precision.

Transitioning into the second segment, we witness the generator algorithm’s 
progression as it refines its log-generation capabilities. However, a noticeable 
interruption occurs at the juncture marking the transition from section 2 to 
section 3. This disruption is the result of the activation of a critical safeguard: the 
learning protection algorithm. This ingenious mechanism combats overfitting 
by intermittently deactivating specific neurons within the algorithm. This 
proactive approach prevents the algorithm from becoming overly specialized, 
ensuring its adaptability to diverse data patterns.

Finally, in the third segment, we observe a harmonious equilibrium between 
the adversarial and generating algorithms. This delicate balance reflects the 
algorithm’s capacity to produce accurate, high-quality results while maintaining 
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data integrity. In essence, these visual insights into the algorithm’s performance, 
as exemplified by Figure 8, provide an invaluable window into the inner 
workings of this complex AI system, shedding light on its multifaceted learning 
dynamics and fine-tuned self-regulation mechanisms.

As elucidated in preceding sections, our well dataset comprises a total of 
15 wells, 10 of which played a pivotal role in the algorithm’s training process, 
while the remaining 5 wells were meticulously reserved for algorithmic testing. 
It is of paramount importance to highlight that these 5 wells, along with their 
proximate seismic trace, remained unseen by the algorithm. In other words, the 
information pertaining to these specific wells and their associated seismic trace 
was intentionally excluded from the data collection process.

To ensure that the algorithm’s results align seamlessly with the scale of the 
well data, a meticulous procedure was followed. Firstly, the acoustic impedance 
profiles within each well were diligently calculated. Subsequently, these results 
were skillfully transformed to match the seismic scale in close proximity to 
the well, utilizing a Backus averaging technique. Following this critical step, 
the aftershocks near each well were procured as requested data inputs for the 
data-adversarial algorithm. The algorithm then generated the inverse, namely 
the acoustic impedance, which was rigorously evaluated against the acoustic 
impedance derived directly from the well logging data. The outcomes of this 
rigorous evaluation have proven to be exceptionally satisfying, a fact that will 
become increasingly evident as we delve further into our findings.

A conscious effort was made to ensure that the selection of the utilized wells was 
not constrained to a single geographic region or a limited time range. This strategic 
decision was driven by the objective of attaining algorithmic results that encompass 
a broad spectrum, spanning both high and low values of acoustic impedance.

Figures 9 and 10 present visual representations of the acoustic impedance 
estimations juxtaposed with the sound resistance derived directly from well 
logging. Moreover, each estimation is accompanied by its respective error rate. 
The mean squared error (MSE) values reveal the accuracy of the algorithm’s 
predictions. For instance, for well number one, the MSE equates to 0.10615 
acoustic impedance units, while for well number two, it stands at 0.10819 
acoustic impedance units. This pattern continues, with the MSE values for each 
well illustrating the algorithm’s proficiency in estimating acoustic impedance 
across the dataset. Notably, for well number thirty-five, the MSE amounts to 
0.10169 acoustic impedance units, for well number thirty-seven, it reaches 
0.12529 acoustic impedance units, and lastly, for well number fifty, it registers 
at 0.11555 acoustic impedance units.

These results underscore the algorithm’s remarkable capacity to approximate 
acoustic impedance values, demonstrating its robustness and reliability across 
a diverse array of well data scenarios.
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Figure 9— Comparing the impedance obtained from the well and the GAN algorithm along 
with its error. (A&B) Well No.1; (C&D) Well No.2

Figure 10— Comparing the impedance obtained from the well and the GAN algorithm along 
with its error. (A&B) Well No.35; (C&D) Well No.37; (E&F) Well No.50

Following the inversion of the seismic cube, we arrive at the ensuing results, 
which are meticulously detailed in Figures 11 and 12.
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Figure 11—In-line number 3533-GAN Inversion results

Figure 12—X-line number 5319 – GAN Inversion results
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In seismic inversion, the generative-adversarial algorithm differs significantly 
from traditional methods in various aspects. One of the most notable distinctions 
is its liberation from the need for wavelet extraction, a key characteristic that 
sets it apart. Traditional approaches often involve wavelet extraction, which 
introduces a potential compromise in result accuracy. This is due to the manual 
intervention required during wavelet preparation, where human operators iterate 
to identify the most suitable wavelet. As a result, traditional seismic inversion 
outcomes bear the mark of human skill and precision.

Moreover, the noise in seismic and well-logging operations poses a persistent 
challenge. Many traditional methods are susceptible to noise interference, 
which can jeopardize result fidelity. Excessive noise levels can render the entire 
dataset untrustworthy, necessitating data acquisition repetition. In contrast, 
when using the generative-adversarial deep learning algorithm for inversion, 
the need for wavelet extraction is entirely eliminated. The inversion process is 
based on generating a log at the location of each trace, followed by computing 
the acoustic impedance log. As a result, there is no requirement for external 
wavelet extraction, as the generative-adversarial algorithm inherently possesses 
the ability to learn. Post-training, it can effectively distinguish between noise 
and the original data, significantly mitigating the impact of noise. During the 
training phase, the algorithm acquires the capability to discern the interplay 
between different data components and, thanks to its memory, diminishes 
noise interference during the production phase. Notably, the inversion method 
using the generative-adversarial algorithm differs from the color inversion 
method as it eliminates the need for secondary operator calculations, offering 
a more streamlined and accessible workflow. In the subsequent sections, we 
will delve into the outcomes of inversion achieved through the generative-
adversarial algorithm, comparing them with band-limited methods and model-
based inversion to further highlight the distinctive capabilities of this algorithm 
(Figure 13 and 14).

In stark contrast to the outcomes produced by the band-limited methods 
and model-based inversion, the results generated by the generative-adversarial 
algorithm exhibit an exceptional level of coherence. This heightened coherence 
signifies that the inversion results are characterized by a remarkable absence 
of discontinuities and non-uniformities. The underlying rationale for this 
remarkable consistency lies in the intrinsic memory of the generative algorithm.

The generative algorithm embarks on the construction of new structures 
by diligently referencing the precedents it has encountered. This memory-
driven approach imparts a unique advantage, ensuring that the results remain 
harmonious and steadfastly coherent. The visual representation in Figure 
13 distinctly underscores the divergent nature of the inversion outcomes 
across these three approaches. This marked difference in the outcomes can 
be predominantly attributed to the generative-adversarial algorithm’s innate 
capacity for learning and adaptability. As the algorithm proceeds through its 
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iterations, it progressively hones its ability to discern and replicate structural 
patterns, thus underpinning the consistent and coherent nature of its inversion 
results.

Figure 13—Comparing the consistency of seismic inversion results using three GAN 
algorithms, band limited and model base methods.

The generative-adversarial algorithm stands out as a powerful tool, and its 
effectiveness is enhanced through training with well survey data. What further 
distinguishes it and significantly elevates its appeal is its superior resolution 
when compared to conventional methods. It’s crucial to emphasize that while 
the resolution of the generative-adversarial algorithm’s results may align with 
the seismic wavelength, it is precisely this alignment that results in a substantial 
distinction in outcomes. The core of this algorithm’s effectiveness lies in the 
nuanced functioning of its adversarial unit, known as the discriminator. In 
its dynamic interaction with the generator network, the discriminator plays a 
pivotal role in augmenting and optimizing the fidelity of the data it processes. 
The result of this synergy is a marked improvement in the correlation between 
the algorithm’s results and real-world data, effectively enhancing both vertical 
and lateral resolution. As elegantly illustrated in Figure 14, the generative-
adversarial algorithm excels in delivering vertical resolution and clearly 
showcases its prowess in lateral resolution. This profound enhancement 
in resolution capabilities signifies a significant leap forward compared to 
conventional inversion methods.
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Figure 14—Compare resolution of seismic inversion results using three GAN algorithms methods, 
band limited method and model base method. (A) Vertical resolution; (B) lateral resolution.

In the forthcoming analysis, we investigate the correlation coefficients, which 
serve as a pivotal measure of alignment, between the datasets generated by 
the generative-adversarial algorithm and the acoustic impedance data extracted 
from within the well. In addition to this, we conduct an in-depth examination 
of the results obtained through the band-limited and model-base methods 
(Table4). This comprehensive evaluation is presented visually in Figures 15 to 
19. It’s noteworthy to emphasize that the five wells under study form a crucial 
component of test dataset. Significantly, the generative-adversarial algorithm 
was not previously exposed to this subset of data during its training. This 
crucial distinction underscores the algorithm’s ability to generalize its learning 
to unseen data.

The correlation coefficients are as follows:

1. For well number 1, the correlation coefficient stands at 0.98918, suggesting 
a strong alignment between the algorithm’s outputs and the well data.

2. For well number 2, the correlation coefficient is an impressive 0.96143, 
indicating a highly congruent match between the algorithmically generated 
data and the actual well measurements.
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3. In the case of well number 35, a remarkable correlation coefficient of 
0.98994 is achieved, underlining the robustness of the algorithm’s predictions.

4. For well number 37, the correlation coefficient stands at 0.96657, suggesting 
a strong alignment between the algorithm’s outputs and the well data.

5. Lastly, for well number 50, the correlation coefficient reaches a 
commendable 0.98174, reaffirming the algorithm’s accuracy in replicating 
acoustic resistance values.

These results collectively emphasize the generative-adversarial algorithm’s 
consistent ability to produce data that closely mirrors real-world acoustic impedance 
measurements, even when applied to unseen well data. This capability underscores 
the precision and reliability of the algorithm in various data contexts.

Table 4— correlation coefficient between the results of three methods of inversion with well data.

Methods of inversion GAN Model-base Band -limited
Well No.1
Well No.2
Well No.35
Well No.37
Well No.50

0.98918
0.96143
0.98994
0.96657
0.98174

0.65703
0.78652
0.83537
0.51795
0.65063

0.64175
0.66614
0.71285
0.46533
0.3534

Figure 15—Correlation coefficient between the acoustic impedance obtained from well number 1 
and the output impedance of seismic inversion methods of generator-adversarial algorithm, band 
limited and model-based. (A) GAN(B) Model-based method; (C) Band-Limited Method.
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Figure 16— Correlation coefficient between the acoustic impedance obtained from well number 
2 and the output impedance of seismic inversion methods of generator-adversarial algorithm, 
band limited and model-based. (A) GAN(B) Model-based method; (C) Band-Limited Method.

Figure 17— Correlation coefficient between the acoustic impedance obtained from well number 
35 and the output impedance of seismic inversion methods of generator-adversarial algorithm, 
band limited and model-based. (A) GAN(B) Model-based method; (C) Band-Limited Method.
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Figure 18— Correlation coefficient between the acoustic impedance obtained from well number 
37  and the output impedance of seismic inversion methods of generator-adversarial algorithm, 
band limited and model-based. (A) GAN(B) Model-based method; (C) Band-Limited Method.

Figure 19— Correlation coefficient between the acoustic impedance obtained from well number 
50 and the output impedance of seismic inversion methods of generator-adversarial algorithm, 
band limited and model-based. (A) GAN(B) Model-based method; (C) Band-Limited Method.

The table presented below (Table5) provides a comprehensive overview of 
MSE values, highlighting the performance of the GAN algorithm in the context 
of seismic inversion accuracy.
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Table 5—MSE Values in Test Wells

Methods of 
inversion Well 1 Well 2 Well35 Well 35 Well 50

GAN

Model-base

Band -limited

0.10615

2.1501

3.8641

0.10819

2.1686

2.8358

0.10169

1.4504

2.0356

0.12529

3.8829

4.8028

0.11555

3.459

5.6773

As evident from the above table, the GAN algorithm stands out by 
demonstrating significantly improved accuracy in seismic inversion when 
compared to both the model-base and the band limited algorithms across 
various test wells. Notably, the MSE values for the GAN algorithm are notably 
lower than those of the alternative models. This data underscores the potential 
of the GAN algorithm as a valuable tool in enhancing the precision of seismic 
inversion processes, suggesting its efficacy in real-world applications and 
its potential to contribute to advancements in the field. Further analysis and 
exploration of this algorithm’s capabilities could yield valuable insights and 
benefits in geophysical exploration and related domains.

CONCLUSION 

Seismic inversion is a highly effective technique for exploring hydrocarbon 
reserves, and continuous optimization and the development of new methodologies 
are essential for increasing productivity and mitigating risks in exploratory 
operations. In this landscape of progress, the Generative Adversarial Deep 
Learning algorithm has emerged as a cutting-edge and remarkably efficient tool 
for creating highly realistic models. When applied to seismic data inversion, 
this algorithm not only enhances precision but also streamlines computational 
efficiency. Moreover, its development within the Python programming 
ecosystem ensures accessibility to experts worldwide, fostering an open-source 
culture for further refinement and evolution. Despite its complex architecture, 
the Generative Adversarial algorithm is user-friendly, with the training and 
implementation phases compartmentalized, making seismic cube inversions as 
straightforward as a few simple clicks.

The Generative Adversarial Deep Learning algorithm is a powerful 
instrument for generating highly realistic models and significantly reducing 
errors in acoustic impedance measurements compared to conventional 
methods such as Band-limited and Model-based inversion, aligning closely 
with impedance values acquired from well data. It boasts exceptionally high 
vertical and lateral resolution capabilities in estimating acoustic impedances, 
enabling the discernment of subsurface layers based on impedance distinctions. 
Additionally, its structural robustness makes it resistant to noise, preventing error 
propagation caused by noise in the results. The GAN algorithm also exhibits a 
strong correlation between its output impedance and reality, with a maximum 
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Mean Squared Error (MSE) of 0.12529 acoustic impedance units compared to 
5.6773 in other inversion methods, achieving an accuracy of 97.5%.

For future research, optimizing temporary memory management is essential 
to prevent bottlenecks and enhance algorithm training efficiency. Exploring 
more efficient alternatives to the Backus algorithm can reduce code complexity 
and improve accuracy. Comparative analyses with other deep learning and 
machine learning methods can refine the algorithm and highlight its strengths. 
Investigating new sub-network architectures beyond fully connected networks 
shows promise, potentially revealing novel insights and improving performance.

In conclusion, the Generative Adversarial Deep Learning algorithm 
represents a promising frontier in seismic inversion and subsurface exploration. 
Its potential for refinement and development, coupled with its robustness and 
efficiency, makes it a valuable tool for both current and future experts in the 
field. Further research and innovation in this domain hold the key to unlocking 
even greater insights and capabilities in hydrocarbon reserve exploration. 
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