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ABSTRACT 

Today, due to the increasing recognition of the capabilities of machine learning and deep learning 
algorithms, the use of these algorithms is undergoing significant development. This ongoing 
evolution has led to the creation and enhancement of numerous algorithms and their variants. 
These advancements not only enhance the accuracy of algorithms but also pose challenges for 
researchers in terms of their understanding and utilization. The increasing capabilities of these 
algorithms have resulted in a dramatic rise in their utilization within seismic exploration. Among 
these, generative adversarial algorithms stand out due to their unique abilities and rapid progress, 
making them a crucial part of deep learning algorithms applied to various seismic exploration 
challenges. One notable characteristic of this algorithm is its high complexity and the existence 
of multiple variants. In this article, we aim to provide a comprehensive yet concise overview of 
generative adversarial algorithms, focusing on their theoretical foundations and mathematical 
underpinnings as they apply to seismic exploration. By doing so, we facilitate researchers’ initial 
understanding of this algorithm, allowing them to grasp its fundamentals before delving into its 
intricacies and more time-consuming aspects. This approach enables researchers to intelligently 
and purposefully explore the algorithm according to their specific goals.

KEY WORDS: Deep Learning Algorithm, Seismic Exploration, GAN method, Review re-
search
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INTRODUCTION

The concept of deep learning initially surfaced in the scientific community in 
1967, introduced by Ivakhnenko and Lapa. Subsequently, in 1972, Ivakhnenko 
developed a deep learning network grounded in the group method of data 
handling [1] [2].

Different capabilities in deep learning and machine learning algorithms 
have led to the development of various algorithms addressing challenges in 
geosciences and petroleum sciences. In 1993, Charlebois and his colleagues 
pioneered an integrated system grounded in artificial intelligence for remote 
sensing, introducing the concept of System of Experts for Intelligent Data 
Management [3].The following year, Dibble designed a versatile system 
capable of learning via genetic algorithms alongside Geographic Information 
Systems. This novel approach, known for its proportionality and efficiency, 
facilitated the assessment of absolute and relative spatio-temporal relationships 
within geographic databases [4].In 1996, Dysart develop machine learning-
based system derived from a two-dimensional stochastic model. Utilizing 
gridded bathymetric blocks, Seafloor represented a concise set of model 
parameters describing the ocean floor’s physical properties. This study delves 
into the inversion component, aimed at swiftly estimating model parameters 
sans iteration or initial values. Leveraging machine learning techniques, it 
achieves rapid inversions, circumventing many practical limitations associated 
with conventional least-squares methods [5]. The exploration of liquefaction 
potential stands as a pivotal element in geophysical and earth sciences, bearing 
significant relevance in the assessment of environmental hazards. In 2003, Barai 
undertook a systematic classification of regions susceptible to liquefaction 
by employing artificial neural networks (ANN) [6].In 2009, Su successfully 
assessed the stability of tunnel walls using the Gaussian machine learning 
algorithm, demonstrating its efficacy [7].

One of the most significant advantages of employing deep learning and 
machine learning algorithms lies in their simultaneous and integrated use. In 
2012, Alimoradi et al. utilized seismic inversion data to forecast the porosity of 
oil reservoirs [8]. Furthermore, Bagheri and Riahi (2015) integrated multilayer 
perceptrons (MLPs), support vector classifiers (SVC), and K-nearest neighbor 
(KNN) algorithms to conduct Seismic Facies Analysis (SFA) [9].

In 2017, Lei.et al demonstrated the efficacy of deep learning algorithms in 
handling vast seismic data. By constructing a scalable model based on the CNN 
algorithm, they successfully extracted geological features from seismic data, 
showcasing the potential of these algorithms to manage large datasets effectively 
[10]. Building on this progress, Guoyin.et al 2018 utilized the same algorithm, 
along with continuous wavelet transforms (CWTs), to estimate lithology from 
seismic data. This marked another advancement in the integration of machine 
learning and deep learning methods within the realms of petroleum engineering 
and Geoexploration sciences [11].
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As the field continues to evolve, the utilization of these algorithms remains 
promising. The complexities inherent in seismic inversion, coupled with the 
diversity of algorithms available, highlight the potential for machine learning 
and deep learning techniques to revolutionize this domain. In 2020, Rui et 
al. exemplified this potential by employing the deep residual convolutional 
neural networks (DRCNNs) algorithm to invert two-dimensional joint speed of 
sound waves using magneto telluric data, updating the sound resistance level 
and subsurface electromagnetic data using the Gauss-Newton method [12]. As 
previously mentioned regarding the role of seismic inversion, it serves as an 
exceptionally efficient tool in oil exploration. In 2022, Wang et al., and in 2024, 
Azizzadeh Mehmandost Olya et al., conducted seismic inversion using various 
iterations of the GAN algorithm, these endeavors resulted in a notable increase 
in both accuracy and speed of inversion [13] [14]

Another important potential of these algorithms is their versatility, as they 
have not only been applied to tabular and complex well report data but have 
also found widespread use in image data processing. In 2023, Azizzadeh 
Mehmandost Olya and Mohebian employed the CUDA Deep Neural Network 
Library Long Short-Term (CUDNNLSTM) algorithm, a deep learning algorithm 
designed to run on a graphics card, to predict the map of permeability potential 
for oil wells using core data [15]. Also, in 2023, Azizzadeh Mehmandost Olya 
and Mohebia successfully estimated the damping factor and quality factor 
of seismic waves using the CUDNNLSTM algorithm. [16] Additionally, in 
2024, utilizing the YOLOV5 algorithm, which is a computer vision algorithm, 
Azizzadeh Mehmandost Olya and colleagues successfully transitioned from 
manual and conventional well wall fracture detection to automatic and real-
time detection [17].

Having briefly reviewed the scope of deep learning algorithms and machine 
learning, we must acknowledge that generative algorithms stand out as one of 
the most crucial categories in deep learning today. Among these, generative 
adversarial algorithms (GANs) have gained significant traction in recent years 
due to their unique nature, particularly in the fields of petroleum sciences and 
earth sciences. In the following sections, alongside a bibliographic review, we 
will delve into the concepts and mathematics of this algorithm in an accessible 
manner. We will also explore its potential applications in geo-exploration and 
seismic explorations. This endeavor aims to equip researchers in this domain 
with not only a thorough understanding but also the tools to leverage these 
advancements for the future development of their research.

GAN bibliography

Bibliographic review is a critical aspect of scientific research, involving the 
systematic identification, evaluation, and synthesis of existing literature on a 
particular topic. This process is invaluable as it allows researchers to build upon 
previous work, avoid duplication, identify gaps in knowledge, and establish the 
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context for their own investigations. By reviewing a wide range of articles, 
researchers can gain insights into the evolution of ideas, methodologies, and 
findings in their field, helping them to situate their research within the broader 
scholarly conversation.

Co-occurrence analysis within bibliographic reviews refers to the 
identification and analysis of patterns of occurrence of keywords, concepts, or 
terms across a body of literature. This technique helps researchers to uncover 
relationships between different ideas or topics, identify key themes or trends, and 
map the intellectual structure of a research area. By identifying frequently co-
occurring terms or concepts, researchers can gain a deeper understanding of the 
interconnectedness of ideas within their field, which can inform the development 
of research questions, the design of experiments, and the interpretation of 
results. Overall, bibliographic reviews and co-occurrence analysis are essential 
tools for researchers to navigate the vast landscape of scientific literature, 
enhance the rigor and relevance of their work, and contribute meaningfully to 
the advancement of knowledge in their respective fields.

By selecting and examining the Scopus scientific database as a valid scientific 
resource and reviewing 1598 articles till 2024 related to the GAN algorithm 
in the fields of earth sciences, energy, and engineering, we created highly 
significant maps highlighting the importance of the GAN algorithm. As we can 
see in Figure 1, there have been numerous citations and links to the keyword 
“generative adversarial algorithm” in recent years, indicating the significance 
and prominence of this algorithm. In Figure 2, the density of research conducted 
on the three keywords “generative adversarial algorithm,” “seismic waves,” 
and “seismic data” is notably significant.

Figure 1:Analyzing the scattering and clustering bibliometrics of the Scopus database over 
time using VOS Viewer software, emphasize the pivotal role of GAN algorithms in realm of 
energy, earth science and engineering.
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Figure 2:Topic density related to GAN algorithms in realm of energy, earth science and 
engineering, VOS Viewer software.

GANs

The concept of Generative Adversarial Networks (GANs) is a relatively recent 
innovation in artificial intelligence. The idea was first introduced in a research 
paper by Ian Goodfellow and his colleagues in 2014. This groundbreaking work 
laid the foundation for a powerful generative modeling technique that has since 
revolutionized fields like computer vision and natural language processing 
[18].Generative Adversarial Networks (GANs) represent a cutting-edge 
deep learning paradigm that has garnered substantial attention for its ability 
to perform generative modeling tasks. GANs excel at learning the intricate 
patterns inherent in a dataset and leveraging that knowledge to generate novel 
data that closely mirrors the original data distribution. The architecture of GANs 
comprises two neural networks engaged in an adversarial relationship. On one 
hand, the generator network functions as an adept fabricator, aiming to craft 
synthetic data that is virtually indistinguishable from genuine data. Conversely, 
the discriminator network (Adversarial Network) operates as a vigilant verifier, 
discerning whether the input data is real or synthetic [19]. During the training 
phase, the generator network refines its generative capabilities by incorporating 
feedback from the discriminator network. Simultaneously, the discriminator 
network enhances its discriminatory prowess to effectively distinguish between 
genuine and synthetic data instances. This iterative process fosters a competitive 
dynamic between the two networks, propelling them to continually enhance their 
performance. The iterative training process of GANs leads to a convergence 
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where the generator network becomes adept at generating highly realistic 
data samples that align closely with the original dataset. This convergence is 
facilitated by the adversarial interplay between the generator and discriminator 
networks, which drives them towards optimizing their respective functions.

GANs represent a groundbreaking approach to generative modeling within 
the realm of deep learning. By leveraging adversarial competition between 
neural networks, GANs can achieve remarkable results in generating data that 
exhibits a high degree of fidelity to the underlying data distribution [20].

Figure 3:An Overview of the GAN Algorithm. In This figure auxiliary algorithms can be any 
algorithm used for pre-processing tasks.

How do GANs work?

Most explanations of GAN algorithms use the analogy of a forger and a 
detective, which is effective. However, this article offers a simpler explanation 
using a different game.

In 1970, a two-player board game called “Mastermind” was invented by 
Mordecai Meirowitz [21]. In this game, one player secretly arranges a code of 
4 or 5 colored pegs from a set of available colors. The other player attempts 
to guess the hidden code within a limited number of tries (e.g., 15). After each 
guess, the first player provides feedback, indicating the number of correct colors 
and their positions (if any). This process continues until one player-side player 
prevails over the other side.
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The generative adversarial network (GAN) is similar to Mastermind. The 
adversarial network acts like the player who arranges the hidden code, while 
the generative network is like the player trying to guess the code. The goal is to 
choose the number of training steps and optimization algorithms such that the 
generative network “wins” by creating an accurate model (Figure 4). However, 
if these parameters are not carefully chosen, the generative network may fail to 
learn the correct model.

Figure 4:A general explanation of the training of the adversarial generative algorithm using 
the Mastermind game

Math behind the GAN

The Generative Adversarial Network (GAN) is a deep learning framework 
that involves two neural networks: the generator and the discriminator. The 
mathematics behind GANs is primarily based on game theory and optimization 
techniques. Let’s break down the mathematics step by step and then provide an 
example.

Generator Network (G):

 The generator takes random noise as input and generates data samples. It is 
represented by a function  where  is the input noise vector sampled 
from a predefined distribution (often Gaussian).
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Discriminator Network (D):

The discriminator evaluates the generated samples and tries to distinguish 
between real and fake data. It is represented by a function  where  is 
the input data (real or generated).

Training Process:

During training, the generator and discriminator play a minimax game. The 
objective is for the generator to produce data that is indistinguishable from 
real data, while the discriminator aims to correctly classify real and fake data. 
Mathematically, the training objective is expressed as:

The first term maximizes the probability of the discriminator correctly 
classifying real data. The second term maximizes the probability of the 
discriminator incorrectly classifying generated data as real (hence the 

).

Let’s consider a simplified scenario where the generator  and discriminator 
 are feedforward neural networks.

 Generator Network:

•	 Input: Noise vector  of size 

•	 Output: Generated data sample  of size 

Discriminator Network:

•	 Input: Data sample  (real or generated) of size 

•	 Output: Probability that  is a real sample

Training:

•	 Randomly sample noise  from a Gaussian distribution.

•	 Generate a fake sample  using the generator.

•	 Feed real and fake samples (along with their labels) to the discriminator 
for training.

•	 Update the generator and discriminator using gradient descent to 
minimize/maximize the respective objectives.

Loss Function:

The discriminator’s loss is typically binary cross-entropy loss, aiming to 
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correctly classify real and fake samples. The generator’s loss is the negation of 
the discriminator’s loss (i.e., minimizing 

This process iteratively improves both the generator and discriminator 
until the generator produces high-quality samples that are difficult for the 
discriminator to differentiate from real data. Keep in mind that this is a simplified 
explanation, and actual implementations may involve additional complexities 
and optimizations.

GAN variants

Generative Adversarial Networks (GANs) have revolutionized the field of 
generative modeling, allowing us to create realistic and novel data. However, 
the original GAN formulation comes with certain challenges. To overcome 
these limitations, researchers have proposed numerous variants, each addressing 
specific shortcomings and excelling in particular tasks. Here’s a deeper dive into 
some prominent GAN variations, along with their mathematical and statistical 
considerations.

Vanilla GANs introduced by Ian Goodfellow in 2014, vanilla GANs consist 
of a generator and a discriminator network. The generator tries to create data 
samples that mimic the real data distribution, while the discriminator tries to 
distinguish between real and fake samples. They are trained adversarially, with 
the generator trying to fool the discriminator and the discriminator trying to 
become better at distinguishing real from fake data [18]. 

In Conditional GANs (CGANs), both the generator and discriminator are 
conditioned on additional information, such as class labels. This allows for the 
generation of data samples conditioned on specific attributes, making them useful 
for tasks like image-to-image translation and generating samples with specific 
characteristics [22] [23]. Deep Convolutional GANs (DCGANs), proposed by 
Radford et al. in 2015, utilize deep convolutional networks in both the generator 
and discriminator. They stabilize training and generate higher-quality samples 
compared to vanilla GANs, making them popular for image generation tasks 
[24]. The Wasserstein GANs (WGANs) introduced by Arjovsky et al. in 2017, 
WGANs use the Wasserstein distance (Earth Mover’s distance) instead of the 
traditional Jensen-Shannon divergence for training. This change leads to more 
stable training dynamics and improved convergence properties [25].

Least Squares GANs (LSGANs), proposed by Mao et al. in 2017, replace 
the binary cross-entropy loss used in traditional GANs with least squares loss 
functions. This modification helps address the problem of mode collapse and 
produces sharper images in image generation tasks [26]CycleGANs, introduced 
by Zhu et al. in 2017, are designed for unpaired image-to-image translation. They 
learn mappings between two domains without requiring paired data examples, 
making them useful for tasks like style transfer and domain adaptation [27]. 



10

StyleGANs, developed by Karras et al. in 2019, focus on generating high-
resolution and realistic images by incorporating style-based architecture. They 
allow for controlling both the global structure and local details of generated images, 
leading to impressive visual quality [28]. BigGANs, introduced by Brock et al. 
in 2019, are designed to generate high-quality images at high resolutions. They 
achieve this by scaling up both the model architecture and the training process, 
using techniques like large minibatches and hierarchical latent spaces [29].

S Self-Attention GANs (AGANs), proposed by Zhang et al. in 2018, 
incorporate self-attention mechanisms into the GAN architecture. This helps 
capture long-range dependencies in images, leading to improved generation 
of coherent and detailed samples [30]. Adversarial Autoencoders (AAEs), 
introduced by Makhzani et al. in 2016, combine the concepts of autoencoders 
and GANs. They use an encoder-decoder architecture where the encoder maps 
input data into a latent space, and the decoder reconstructs the data. The adversarial 
training encourages the latent space to follow a specified distribution [31].

By reviewing the above source, in the table1, we’ll explore various variants 
of the GAN algorithm. Here, we aim to discuss the capabilities, weaknesses, 
and strengths of these algorithms. It’s important to note that in the realm of 
seismic or exploratory investigations, we need a precise understanding of the 
strengths of each variant in their respective fields.

Table 1:Comparison of GAN variants

Variant Key Features Strengths Weaknesses

Vanilla GANs Generator, 
discriminator Versatility, simplicity Mode collapse, training 

instability

CGANs Conditional 
generation

Controlled 
generation, attribute 
manipulation

Requires labeled data

DCGANs Deep convolutional 
networks

Stable training, 
high-quality image 
generation

Computational complexity

WGANs Wasserstein distance Stable training, 
convergence

Requires careful 
hyperparameter tuning

LSGANs Least squares loss
Address mode 
collapse, sharper 
images

Mode collapse can still 
occur

CycleGANs Unpaired image-to-
image translation

Style transfer, domain 
adaptation

Limited to specific image 
translation tasks

StyleGANs Style-based 
architecture

High-resolution, 
realistic images

Computational resources, 
training time

BigGANs Large-scale 
architecture

High-quality images 
at high resolutions

Resource-intensive, 
complex training process

SAGANs Self-attention 
mechanisms

Captures long-range 
dependencies Computational complexity

AAEs Autoencoder, 
adversarial training

Latent space control, 
reconstruction accuracy

May suffer from mode 
collapse
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Nowadays, the development of models and complex algorithms has become 
more accessible and feasible due to the widespread knowledge of programming 
[32]. However, it should be noted that as algorithms become more intricate, 
three key characteristics undergo changes [33] [34]:

1. Convergence speed (measured in training iterations)

2. Computational complexity (measured in FLOPs - Floating Point 
Operations)

3. Sample quality (measured using the Inception Score metric for image 
generation tasks)

Convergence Speed (Iterations)

This indicator refers to how quickly the GAN algorithm converges during 
training. Faster convergence generally means that the model learns to generate 
realistic samples in fewer training iterations [35] [36] [37].

Vanilla GANs, CGANs, and CycleGANs show a moderate convergence 
speed, taking a moderate number of iterations to reach a stable training state. On 
the other hand, DCGANs, WGANs, and LSGANs exhibit faster convergence, 
reaching a stable state relatively quickly. StyleGANs, BigGANs, SAGANs, and 
AAEs have a slower convergence speed, requiring more iterations to achieve 
optimal results due to their complex architectures or training procedures [38] 
[39] [40] [41].

Computational Complexity (FLOPs)

Computational complexity refers to the amount of computational resources 
(measured in FLOPs) required to train the GAN model. Higher complexity 
typically demands more computational power and time [42].

Vanilla GANs and cGANs have relatively low to medium computational 
complexity, making them easier to train compared to more complex variants. 
DCGANs, WGANs, and LSGANs require a medium level of computational 
resources due to their use of deep convolutional networks and alternative loss 
functions. StyleGANs, BigGANs, and SAGANs exhibit high to very high 
computational complexity, requiring significant computational resources and 
longer training times. AAEs fall into the medium complexity range, as they 
combine elements of autoencoders and GANs without the extreme complexity 
of some other variants [40] [41] [43].

Sample Quality (Inception Score)

Sample quality refers to how realistic and diverse the generated samples 
are. The Inception Score metric, commonly used in image generation tasks, 
measures the quality and diversity of generated images [44] [45].
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Vanilla GANs, cGANs, and CycleGANs produce samples with moderate 
quality, achieving a balance between realism and diversity. DCGANs, 
WGANs, and LSGANs generate high-quality samples with good diversity, 
often surpassing the performance of simpler variants. StyleGANs, BigGANs, 
and SAGANs excel in sample quality, producing very high-quality and diverse 
samples due to their advanced architectures and training techniques. AAEs 
demonstrate moderate sample quality, as they prioritize reconstruction accuracy 
and latent space control over pure sample generation performance [40].

In the following, Figure 5 shows the status of the three indicators stated for 
different variants of the GAN algorithm. Of course, it cannot be admitted that 
there is a variant that has perfect performance in all cases. It is not possible to 
say which variants are absolutely good or bad. It should be noted that, depending 
on the amount of data, the level of pre-processing, and the desired accuracy, 
each of them can have a favorable result. In the next part, we will try to delve 
deeper by examining the variants with an approach focused on seismic data 
analysis.

Figure 5:Comparison of different variants of the GAN algorithm based on three indicators: 
Sample Quality, Computational Complexity, and Convergence Speed.

GANs in Seismic exploration 

Seismic data plays a crucial role in mineral and oil discoveries. Therefore, 
their processing, interpretation, inversion, and correction are vital [46] [47]. 
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The GAN algorithm, as a deep learning algorithm, can play a highly effective 
role in seismic correction and inversion.

The traces of the use of GAN algorithms in the field of seismic exploration 
and the issues surrounding it can be seen in a concentrated and gradual manner 
since 2018. In 2018, Siahkoohi and his colleagues reconstructed seismic data 
using the vanilla GAN algorithm and integrated it with the convolutional neural 
network algorithm. This data reconstruction was done in several stages and 
with different levels of data loss (Figure 6). The results show that frequency 
data reconstruction using GANs is in the signal-to-noise range (SNR) of 23.25 
dB to 35.66 dB [48].

Figure 6:Reconstruction of missing seismic data by GAN algorithm by Siahkoohi, et al  in 
2018 [48].
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The challenges of missing or flawed data in seismic acquisition and 
processing arise from various factors like physical limitations and operational 
issues. However, in 2018 Oliveira .et al study introduces a novel approach by 
evaluating the performance of a CGAN for interpolating post-stack seismic 
datasets, marking the first attempt at utilizing deep learning in this particular 
context [49]. Xie .et al in 2018 introduced and develop a deep-learning method 
for noise reduction in onshore seismic data, utilizing two 24-layer Deep Neural 
Networks based on the Generative Adversarial Network architecture with a total 
of 0.3 billion parameters. Correctly trained, these networks can meaningfully 
reduce processing time from weeks to seconds. The approach shows promise 
and can be extended to other processes like first arrival picking. Initial tests on 
real data, following 4 weeks of training, demonstrate hopeful outcomes. Within 
a framework of common shot processing, this technology promises reasonable 
real-time processing capabilities [50].

Analyzing seismic and lithologic facies through 3D reflection seismic data 
is crucial for understanding depositional environments and characterizing 
reservoirs in hydrocarbon exploration. Despite various machine-learning 
methods aiming to enhance interpretation and prediction accuracy, real-
world challenges persist in 3D multiclass seismic facies classification. These 
challenges stem from intricate data representation, scarce labeled training data, 
imbalanced facies class distribution, and a lack of robust evaluation metrics. To 
address these hurdles, Liu. et al in 2020 novel approaches have been developed: 
they utilized a supervised convolutional neural network (CNN) and a semi 
supervised GAN for 3D seismic facies classification with differing levels of 
well data availability (Figure 7). These models leverage actual well log data, 
core analysis, or geological knowledge to predict 3D facies distribution, offering 
more consistent and meaningful insights compared to unsupervised methods [51].

Figure 7:The algorithm architecture was designed by Liu et al. in 2020. The discriminative 
algorithm is based on CNN [51].
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Meng, et al in 2020 introduce a semi-supervised deep learning approach 
using Generative Adversarial Networks for seismic impedance inversion. 
This workflow incorporates three networks: a generator, a discriminator, 
and a forward model. Training involves utilizing well logs for guidance and 
leveraging unlabeled data through the forward model. Testing on the Marmousi2 
model demonstrates that the Meng,et al method, which combines labeled and 
unlabeled data, yields more consistent impedance predictions compared to 
traditional deep learning inversion techniques [52].

Figure 8:The algorithm architecture was designed by Meng et al. in 2020. This includes both the 
generative algorithm architecture (A) and the discriminative algorithm architecture (B) [52].

To enhance accuracy in processing seismic data, interpolation is often 
needed for irregularly missing data during acquisition. A solution lies in using 
a CGAN, comprising a generator and a discriminator, as a deep learning model 
for this task. However, CGANs are typically limited to the dataset they are 
trained on, hindering their applicability to different areas. Wei, et al in 2021 
were involved in designing a CGAN based on Pix2Pix GAN specifically for 
interpolating irregularly missing seismic data.  Unlike traditional methods requiring 
varied parameter selections, our CGAN-based interpolation method streamlines the 
process and proves cost-effective, with minimal processing time post-training [53].

Song, et al in 2022 utilized a CGAN to establish a connection between 
conventional Ocean Bottom Cable (OBC) seismic imagery and broader high-
resolution imagery. Despite the training data being confined to the overlapping 
zone of these distinct acquisitions, Song, et al findings indicate that this mapping 
enables image translations, thereby enhancing the resolution and signal-to-
noise ratio (SNR) of the entire initial OBC image volume. Additionally, the 
network’s probabilistic layers facilitate model uncertainty analysis [54].
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Sun, et al in 2023 were developed a novel approach involving Model-data-
driven (MDD) GANs for estimating elastic parameters using prestack seismic 
data. Initially, a comprehensive elastic parameter dataset is generated through 
traverse sampling of the elastic parameter model space and Gaussian sampling. 
Subsequently, synthetic prestack amplitude-versus-angle (AVA) gathers are 
created using the Zoeppritz equations based on constructed reflection coefficient 
sequences. CGANs were then trained using these synthetic datasets to establish a 
link between synthetic prestack AVA gathers and elastic parameters. Evaluation 
Sun, et al of the MDD-CGANs on a 2D elastic parameter model indicates closer 
inversion results to the true values compared to limited-data-driven CGANs 
and fully convolutional networks [55].

Duan, et al in 2024 used seismic data from the California Strong Motion 
Instrumentation Program (CSMIP), and a CGAN model was trained and 
evaluated by them. This model establishes a joint conditional probability 
distribution among intensity measures at different depths, aiding in the 
stochastic prediction of shallow intensity measures. Its performance was 
assessed against empirical formulas across various site conditions and depth 
intervals using relative error coefficients. The findings of Duan, et al suggest 
that the CGAN model accurately predicts shallow seismic intensity measures, 
adhering to specific conditional distributions while retaining the stochastic 
nature of seismic motion. Compared to empirical formula models, the CGAN 
model demonstrates superior predictive capabilities [56].

Figure 9:The CGAN architecture was developed by Duan et al. in 2024 [56].

DISCUSSION 

In the previous sction, we reviewed the important effects of the GAN algorithm 
in seismic exploration. In this section, we will discuss the characteristics of 
each GAN variant and its ability to solve problems in the field of seismic 
exploration. We will attempt to determine which variant is suitable for different 
parts of seismic exploration based on the advantages of each variant.

Generally, seismic data is divided into two types: pre-stack and post-stack 
data [47]. Pre-stack data contain valuable information, including angular data, 
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but their large volume poses a significant challenge in achieving convergence 
in results. In the previous section, we examined various variants of the GAN 
algorithm and evaluated them based on three key metrics. Based on this 
analysis, SAGANs and CycleGANs variants are well-suited for pre-stack 
data analysis. The reason for their suitability in handling pre-stack data lies 
in their processing speed and network complexity. It’s worth noting that the 
SAGANs network is more complex than the CycleGANs network, requiring 
better hardware resources. However, both variants are expected to perform well 
in pre-stack data processing.

Seismic inversion is a process in which acoustic impedance is extracted from 
seismic traces. This process is one of the most challenging processes in seismic 
data analysis due to various factors such as limited data bands. Naturally, 
seismic inversion on post-stack data is much easier than on pre-stack data due 
to the lower volume of data [57].

Based on investigations conducted in previous sections, if high computing 
resources such as central processes unit (CPU), random access memory (RAM), 
and graphic processes unit (GPU) are available, using the BIGGANs variant can 
yield highly suitable results. However, we recommend using CycleGANs and 
WGANs variants for inversion (both post-stack and pre-stack) and avoiding the 
use of Vanilla GANs. This is due to issues such as mode collapse and training 
instability associated with Vanilla GANs, which can be problematic given the 
inherent uncertainties in the inversion process. A crucial point to note is that 
the WGANs variant heavily relies on the configuration of hyperparameters. 
Therefore, it is recommended to use this variant when there is reliable geological 
and seismic information available to validate and optimize the hyperparameters.

Seismic tomography is a crucial method in deep earth science studies, relying 
on the production of image data from the propagation of seismic waves [58]. 
Based on the review of GAN variants, DCGANs and StyleGANs are notable 
options. The DCGAN variant, noted for its high convergence speed in seismic 
comparisons, can be a highly desirable choice, offering excellent accuracy.

We do not recommend using the BigGANs variant in this context due to 
the substantial volume of seismic data involved. In seismic tomography, the 
high complexity of this variant’s network can pose a significant challenge for 
optimization. However, it’s worth noting that the BigGANs variant could be 
employed as an auxiliary option. For instance, the general tomography could 
be conducted using the mentioned variants, and if models with higher accuracy 
are needed locally, then the BigGANs variant could be utilized.

The problem of missing or removing parts of seismic data has always been 
one of the major challenges in utilizing this data. Given that the GAN algorithm 
primarily focuses on constructing realistic models, employing it to repair and 
modify seismic data can be highly beneficial. Thanks to the Self-attention 
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mechanisms, the SAGANs variant emerges as a very suitable option for 
addressing this issue. However, its network complexity may pose a drawback, 
although this can be mitigated by parallelizing the processing.

CONCLUSION 

The GAN algorithm is a very complex yet powerful algorithm that can 
solve many cases related to seismic exploration and geosciences with great 
accuracy and quality. It should be noted that although the use of machine 
learning algorithms has become much easier today due to the development of 
programming language libraries, we must be able to manage data and hardware 
resources while using them. The GAN algorithm is very dependent on data 
management and hyperparameters because their complexity requires attention to 
this issue. One of the most common problems of using deep learning algorithms 
is their high processing level, which is largely solved by using a GPU instead of 
a CPU, but we must note that the problem is not limited to this point. The limited 
amount of RAM space and the many processes of these algorithms cause many 
problems, including RAM overflow. In seismic processing and inversion using 
GAN algorithms, this problem can occur due to the large volume of data and 
RAM overflow calculations. To summarize, we can say that GAN algorithms 
are very significant algorithms, but according to the type of work, the volume 
of data, and the level of processing, appropriate variants should be used in cases 
related to seismic exploration.

REFERENCES
A. G. Ivakhnenko and V. G. Lapa, Cybernetics and Forecasting Techniques, 

American Elsevier Publishing Company, 1967. 
A. G. Ivakhnenko, “{Polynomial theory of complex systems,” IEEE transactions 

on Systems, Man, and Cybernetics, no. 4, pp. 364-378, 1972. 
D. Charlebois, D. G. Goodenough and S. Matwin , “Machine learning from 

remote sensing analysis,” in International Geoscience and Remote Sensing 
Symposium (IGARSS), 1993. 

C. Dibble , “Beyond data: handling spatial and analytical contexts with genetics 
based machine learning,” Advances in GIS research, vol. 2, pp. 1041-
1060, 1994. 

P. S. Dysart, “Bathymetric surface modeling: A machine learning approach,” 
Journal of Geophysical Research: Solid Earth, vol. 101, no. 4, pp. 8093-
8105, 1996. 

S. V. Barai, “Machine learning classifier for seismic liquefaction potential 
evaluation,” Electronic Journal of Geotechnical Engineering, vol. 8c, 
2003. 

G. Su, “Modeling non-linear deformation time series of tunnel using Gaussian 
process machine learning,” in ISRM International Symposium on Rock 
Mechanics, SINOROCK 2009, Hong Kong, 2009. 



19

A. Alimoradi, A. Moradzadeh and M. R. Bakhtiari, “Reservoir porosity 
determination from 3D seismic data - Application of two machine learning 
techniques,” Journal of Seismic Exploration, vol. 21, no. 4, pp. 323-345, 
2012. 

M. Bagheri and M. A. Riahi, “Seismic facies analysis from well logs based 
on supervised classification scheme with different machine learning 
techniques,” Arabian Journal of Geosciences, vol. 8, no. 9, pp. 7153-7161, 
2015. 

H. Lei, D. Xishuang and C. T. Edward, “A scalable deep learning platform for 
identifying geologic features from seismic attributes,” Leading Edge, vol. 
36, no. 3, pp. 249-256, 2017. 

G. Zhang, Z. Wang and Y. Chen, “Deep learning for seismic lithology 
prediction,” Geophysical Journal International, vol. 215, pp. 1368-1387, 
2018. 

R. Guo, M. Li, F. Yang, H. Yao, L. Jiang and M. Ng, “Joint 2D inversion 
of amt and seismic travel time data with deep learning constraint,” in 
Geophysicists International Exhibition and 90th Annual Meeting, SEG 
2020, Virtual, Online, 2020. 

Y. Wang, Q. Ge, W. Lu and W. Yan, “Seismic impedance inversion based on 
cycle-consistent generative adversarial network,” Petroleum Science, vol. 
19, no. 1, pp. 147-161, 2022. 

B. Azizzadeh Mehmandost Olya, R. Mohebian and A. Moradzadeh, “Seismic 
inversion using the Generative-Adversarial algorithm for hydrocarbon 
exploration,” in The 9th International Conference Chemical, Petroleum 
and Environmental, 2024. 

B. Azizzadeh Mehmandost Olya and R. Mohebian, “Hydrocarbon reservoir 
potential mapping through Permeability estimation by a CUDNNLSTM 
Deep Learning Algorithm,” International Journal of Mining and Geo-
Engineering, vol. 57, no. 4, pp. 389-396, 2023. 

B. Azizzadeh Mehmandost Olya and R. Mohebian, “Q-FACTOR ESTIMATION 
FROM VERTICAL SEISMIC PROFILING (VSP) WITH DEEP 
LEARNING ALGORITHM, CUDNNLSTM,” JOURNAL OF SEISMIC 
EXPLORATION, pp. 89-104, 2023. 

B. Azizzadeh Mehmandost Olya, R. Mohebian, H. Bagheri, A. Mahdavi Hezaveh 
and A. Khan mohammdi, “Toward real-time fracture detection on image 
logs using deep convolutional neural network YOLOv5,” Interpretation, 
vol. 12, no. 3, pp. SB9-SB18, 2024. 

I. Goodfellow, A. Jean Pouget, M. Mirza, B. Xu, D. W. Farley, S. Ozair, A. 
Courville and Y. Bengio, “Generative adversarial nets,” Advances in 
neural information processing systems, vol. 27, 2014. 

A. Aggarwal, M. Mittal and G. Battineni, “Generative adversarial network: An 
overview of theory and applications,” International Journal of Information 
Management Data Insights, vol. 1, no. 1, 2021. 

L. Metz, B. Poole, D. Pfau and J. Sohl-Dickstein, “Unrolled generative 
adversarial networks,” arXiv preprint arXiv:1611.02163, 2016. 



20

K. Koyama and T. W. Lai, “An optimal Mastermind strategy,” Journal of 
Recreational Mathematics, vol. 25, no. 4, p. P251, 1993. 

T. C. Wang, M. Y. Liu, J. Y. Zhu, . A. Tao, . J. Kautz and B. Catanzaro, “High-
resolution image synthesis and semantic manipulation with conditional 
gans,” in Proceedings of the IEEE conference on computer vision and 
pattern recognition, 2018. 

K. Regmi and A. Borji, “Cross-view image synthesis using conditional gans,” 
in Proceedings of the IEEE conference on Computer Vision and Pattern 
Recognition, 2018. 

A. Radford, L. Metz and S. Chintala, “Unsupervised representation learning 
with deep convolutional generative adversarial networks,” arXiv preprint 
arXiv:1511.06434, 2015. 

M. Arjovsky, S. Chintala and L. Bottou, “Wasserstein GAN,” in International 
conference on machine learning, PMLR, 2017. 

X. Mao, Q. Li , H. Xie, R. Lau, Z. Wang and S. Paul Smolley, “Least squares 
generative adversarial networks.,” in Proceedings of the IEEE international 
conference on computer vision., 2017. 

J. Y. Zhu, T. Park, P. Isola and A. A. Efros, “Unpaired image-to-image 
translation using cycle-consistent adversarial networks.,” in Proceedings 
of the IEEE international conference on computer vision, 2017. 

T. Karras, S. Laine and T. Aila, “A style-based generator architecture for 
generative adversarial networks,” in Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, 2019. 

A. Brock, J. Donahue and K. Simonyan, “Large scale GAN training for high 
fidelity natural image synthesis,” arXiv, 2018. 

H. Zhang, I. Goodfellow, D. Metaxas and A. Odena, “Self-attention generative 
adversarial networks,” in nternational conference on machine learning, 
PMLR, 2019. 

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow and B. Frey, “Adversarial 
autoencoders,” arXiv, 2015. 

B. C. Pierce, Types and programming languages, MIT, 2002. 
N. M. Razali and J. Geraghty, “Genetic algorithm performance with different 

selection strategies in solving TSP.,” in International Association of 
Engineers., Hong Kong, China, 2011. 

K. Smith-Miles, D. Baatar, B. Wreford and R. Lewis, “Towards objective 
measures of algorithm performance across instance spac,” Computers & 
Operations Research, vol. 45, pp. 12-24, 2014. 

A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consensus 
and averaging,” SIAM journal on control and optimization, vol. 4, no. 1, 
pp. 33-55, 2009. 

X. Zhang, H. Liu, X. Wang, L. Dong, Q. Wu and R. Mohan, “Speed and 
convergence properties of gradient algorithms for optimization of IMRT,” 
Medical physics, vol. 31, no. 5, pp. 1141-1152, 2004. 

A. Nebro, . J. J. Durillo, C. A. Coello Coello, F. Luna and E. Alba, “A study of 
convergence speed in multi-objective metaheuristics.,” in Parallel Problem 



21

Solving from Nature–PPSN X: 10th International Conference, Dortmund, 
Germany,, 2008. 

D. Belomestny, E. Moulines, A. Naumov, N. Puchkin and S. Samsonov, “Rates 
of convergence for density estimation with GANs,” arXiv, 2021. 

A. Almahairi, S. Rajeshwar, A. Sordoni, P. Bachman and A. Courville, 
“Augmented cyclegan: Learning many-to-many mappings from unpaired 
data.,” in International conference on machine learning, PMLR, 2018. 

J. Gui, Z. Sun, Y. Wen, D. Tao and J. Ye, “A review on generative adversarial 
networks: Algorithms, theory, and applications,” IEEE transactions on 
knowledge and data engineering, vol. 35, no. 4, pp. 3313-3332, 2021. 

W. Xia, Y. Zhang, Y. Yang, J. Xue, B. Zhou and M. Yang, “Gan inversion: A 
survey,” IEEE transactions on pattern analysis and machine intelligence, 
vol. 45, no. 3, pp. 3121-3138, 2022. 

O. Goldreich, “Computational complexity: a conceptual perspective,” CM 
SIGACT News, vol. 39, no. 3, pp. 35-39, 2008. 

Y. Hong, U. Hwang, j. Yoo and S. Yoon, “How Generative Adversarial 
Networks and Their Variants Work: An Overview,” ACM Computing 
Surveys, vol. 52, no. 1, pp. 1-43, 2019. 

A. Obukhov and M. Krasnyanskiy, “Quality Assessment Method for GAN Based 
on Modified Metrics Inception Score and Fréchet Inception Distance,” in 
CoMeSySo, 2020. 

S. Konstantin , S. Cordelia and A. Karteek , “How good is my GAN?,” in 
European Conference on Computer Vision 2018, 2018. 

L. Hatton, M. H. Worthington and J. Makin, Seismic data processing: theory 
and practice, Merlin Profiles Ltd.., 1986. 

Ö. Yilmaz , Seismic data analysis: Processing, inversion, and interpretation of 
seismic data, Society of exploration geophysicists., 2001. 

A. Siahkoohi , R. Kumar and F. Herrmann, “Seismic data reconstruction 
with generative adversarial networks,” in 80th EAGE Conference and 
Exhibition 2018: Opportunities Presented by the Energy Transition, 
Copenhagen, 2018. 

D. Oliveira, R. Silva Ferreira and E. Vital Brazil , “Seismic data interpolation 
with conditional generative adversarial networks (cGANs),” in 1st EAGE/
PESGB Workshop on Machine Learning, London, 2018. 

P. Xie, J.-L. Boelle and H. Puntous, “Generative Adversarial Network Based 
Fast Noise Removal on Land Seismic Data,” in SEG Technical Program 
Expanded Abstracts, Anaheim, 2018. 

M. Liu, M. Jervis, W. Li and P. Nivlet, “Seismic facies classification using 
supervised convolutional neural networks and semisupervised generative 
adversarial networks,” Geophysics, vol. 85, no. 4, pp. O47-O58, 2020. 

D. Meng, B. Wu, N. Liu and W. Chen, “Semi-Supervised Deep Learning 
Seismic Impedance Inversion Using Generative Adversarial Networks,” 
in International Geoscience and Remote Sensing Symposium (IGARSS), 
Virtual, Waikoloa, 2020. 



22

Q. Wei, L. Xiangyang and M. Song, “Reconstruction of irregular missing seismic 
data using conditional generative adversarial networks,” Geophysics, vol. 
86, no. 6, 2021. 

X. Song, M. Zhou, P. Jilek, R. Johnston, S. Cardinez and K. Vincent, “Seismic 
Image-to-image Translation Using a Conditional GAN with Bayesian 
Inference,” in 2nd International Meeting for Applied Geoscience and 
Energy, IMAGE 2022, Houston, 2022. 

S. Sun, L. Zhao, H. Chen, Z. He and J. Geng, “Prestackseismic inversion 
for elastic parameters using model-data-driven generative adversarial 
networks,” Geophysics, vol. 88, no. 2, pp. M87-M103, 2023. 

S. Duan, Z. Song, J. Shen and J. Xiong, “Prediction for underground seismic 
intensity measures using conditional generative adversarial networks,” 
Soil Dynamics and Earthquake Engineering, vol. 180, 2024. 

R. H. Stolt and A. B. Weglein, “Migration and inversion of seismic data,” 
GEOPHYSICS, vol. 50, no. 12, pp. 2297-2904, 1985. 

D. L. Anderson and A. M. Dziewonski, “Seismic Tomography,” Scientific 
American, vol. 251, no. 4, pp. 60-71, 1984. 


