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ABSTRACT 
Seismic vulnerability modeling is critical to seismic risk assessment, enabling decision-makers to identify 
and prioritize areas and structures most susceptible to earthquake damage. The use of machine learning (ML) 
algorithms and Geographic Information Systems (GIS) has surfaced as an encouraging approach for seismic 
vulnerability modeling due to their ability to integrate and analyze large volumes of data. In this abstract, we 
present a novel approach to seismic vulnerability modeling that leverages the power of ML and GIS. Using 
Artificial Neural Networks and Random Forest algorithms, the damage intensity values for an earthquake event 
with the help of various factors like the location, depth, land cover, distance from major roads, rivers, soil type, 
population density, and distance from fault lines were predicted. The resulting damage intensity values were 
classified, keeping the Modified Mercalli Intensity Scale as a reference. The ANN and Random Forest algorithms 
performed very well in this study, and both the models’ accuracy was above 95% for training and testing 
data. Utilizing the damage intensity values map, the global seismic hazard map, and other socio-physiological 
parameters were utilized to generate an exposure grid zonation map. Applying this approach to a case study in 
the Satara  district of Maharashtra highlights the model’s effectiveness in identifying vulnerable buildings  and 
improving seismic risk assessment. This approach provides a valuable tool for disaster  management and urban 
planning decision-makers to develop effective mitigation strategies, prioritize resources, and improve overall 
disaster resilience.

KEY WORDS: Machine Learning, Earthquake, Artificial Neural Network, Random Forest, 
Seismic Vulnerability
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INTRODUCTION

An earthquake is defined as any abrupt shaking of the earth’s surface induced 
by the energy released due to the passage of seismic waves. Earthquakes 
are believed to be one of the mostcatastrophic natural disasters. The impact 
of earthquakes can lead to extensive and uncontrollable devastation to the 
environment and society globally, resulting in substantial physical and economic 
harm. The repercussions of earthquakes include loss of human life and property, 
remodeling of the river course and mud fountains, for example, the 1934 Bihar 
earthquake when the agricultural fields were engrossed with mud, and fire risks 
near gas pipelines or electric infrastructure (Manish). 9

As the plate tectonics theory states, the earth is divided into slabs of solid rock 
masses referred to as “plates” or tectonic plates which are always in motion. 
These tectonic plates may be continental or oceanic and are in slow continuous 
motion, and their movement forms three different types of tectonic boundaries. 
When two plates come together, it is called a convergent boundary, but when 
they move apart, they are divergent. And when the plates move side by side, 
they form a transform boundary. The financial damage caused by earthquakes is 
approximately $787 billion. Disaster management before earthquakes happen is a 
vital strategy to reduce earthquake-induced damage. The earthquakes’ exact time, 
magnitude, and place of occurrence are still unforeseeable (Lee, Saro, et al.). 19

Over the past few years, scientists have investigated a specific region’s 
susceptibility from various perspectives, such as geotechnical, structural, and 
socioeconomic factors. Researchers have employed a range of multi-criteria 
decision-making (MCDM) techniques to assess seismic vulnerability, such as 
the analytic hierarchy process (AHP) and fuzzy logic. Developing decision- 
making methods that can quickly fulfill demands requires expert opinions, 
which can lead to bias and error. To address this issue, artificial intelligence 
algorithms, including evolutionary algorithms and adaptive neuro-fuzzy 
inference systems (ANFIS), have been implemented in geological research, 
specifically for evaluating seismic vulnerability. (Peyman Yariyan). 28

Effective disaster risk reduction and management (DRRM) requires 
a comprehensive understanding of risk, hazards, vulnerability, and 
interconnectedness (M.J.D. De Los Santos). Geographic Information System 
(GIS) is a powerful technology that can visualize, map, and analyze the 
interrelationships among these elements in DRRM. However, the success 
of DRRM-related mapping projects depends on adequate and dependable 
information. Remote sensing has become a valuable operational tool in DRRM 
as it can provide a substantial amount of data. Recent studies on scenarios have 
proven useful in promoting awareness and formulating policies (Ravi Sinha). 37

Disaster scenarios can sensitize stakeholders, identify vulnerable areas and 
population groups, and evaluate the effectiveness of various disaster management 
interventions. Urban areas are particularly susceptible to earthquakes as they 
typically have a high population density and contain significant infrastructure 
and resources. Seismic hazard assessment involves evaluating the expected 
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damage and losses resulting from an earthquake in a specific region for a 
particular hazard event, such as an earthquake of a certain magnitude at a 
specific location. Risk assessment is a methodology used to estimate the 
consequences of scenario earthquakes. Furthermore, this evaluation estimates 
the number of injuries, casualties, and possible economic damage. That is 
why disaster management before the event is necessary. Factors like building 
information, altitude, lithology, land use, elevation, distance from streams, 
roads, and population density are considered for assessing the ability of a place 
or a building to withstand seismic waves. To predict seismic vulnerabilities, 
various machine learning algorithms such as Support Vector Machine, 
K-Nearest Neighbor, Bagging, Radial Basis Function, Logistic Regression, 
Artificial Neural Networks (ANN), and Random Forest were employed. 8

However, it was observed that they had been conducted on a region-specific 
scale. No geospatial study for seismic vulnerability has been done for India and 
is focused on predicting seismic vulnerability. Still, no study has considered an 
earthquake’s potential damage intensity. Across the globe, damage or seismic 
intensity has conventionally been utilized to gauge the shaking pattern and the 
scale of the destruction caused by earthquakes. (David J. Wald). Thus, with 
this study, the damage intensity values for any earthquake event dependent 
on its location, magnitude, and other socio-physical characteristics have been 
predicted, and utilizing that information, a risk assessment for the Satara district 
of Maharashtra state has been conducted using the Artificial Neural Network 
and Random Forest Algorithms. 18 This article highlights the significance of 
utilizing GIS technology to conduct disaster scenario studies in promoting 
awareness, informing policy decisions, and formulating effective disaster 
management plans.

STUDY AREA

Figure 1. Study area map of India with earthquake event locations and fault line 4
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India is located above the equator in the northern hemisphere between 
the latitudes 8°4’ and 37°6’ and longitude of 68° 7’and 97°25’. India’s total 
geographic area is around 3.28 million square kilometers, which makes it the 
7th largest country with 29 states and eight union territories. India is one of the 
most earthquake-prone countries in the world, with a long history of devastating 
earthquakes. This is primarily due to the subduction of the Indian plate beneath 
the Asian plate, which creates much tectonic activity. The Indian plate moves 
at a rate of 33 (+-6) mm per year, making it one of the fastest-moving plates 
in the world. As a result, India has different levels of seismicity, with the 
southern part of the country experiencing strong earthquakes and the northern 
part experiencing large, tremendous, and mega earthquakes. To help mitigate 
the effects of earthquakes, the Bureau of Indian Standards created a seismic 
zoning map that divides the country into four seismic zones based on how 
likely they are to experience earthquakes. Zone V is the most active, with the 
highest likelihood of earthquakes, while Zone II is the least active. This map is 
based on historical seismic activities and ground motion. In the last 100 years, 
the number and strength of earthquakes in India has increased significantly. 
Some experts believe this is due to the changing climate, while others suggest 
it may be due to increased urbanization and population growth. India has over 
66 active faults, which are fractures or zones of fractures between two blocks 
of rock. The movement of these blocks of rock releases energy, which travels 
in the form of waves and causes earthquakes. The Himalayan belt is one of the 
most active areas in seismic activity, divided by 15 major active faults. The 
Northern part of India has 16 tectonically active faults, while Southern India 
has about 30 neotectonic faults. 25

The Andaman and Nicobar Islands are at an exceptionally high risk of 
earthquakes, falling under the very high hazard zone of the seismic activity map. 
In addition, many hidden faults throughout India contribute to the country’s 
seismicity.

DATA USED

USGS Earthquake Hazards Program monitors, reports, and researches 
earthquakes and hazards. The USGS Earthquake Hazards Program of the U.S. 
Geological Survey (USGS) is part of the National Earthquake Hazards Reduction 
Program (NEHRP) led by the National Institute of Standards and Technology 
(NIST). Under this program, a database with the earthquake events has been 
curated that contains the location information, depth value, and magnitude 
value of each earthquake event that has occurred globally. The dataset has 
been utilized to extract natural earthquake events, not those caused by nuclear 
activities. The other variable values for the event points were extracted per the 
sources in the table below.



5

Satellite-Based and Other Products
DATA SOURCES UNITS RATIONALE
Latitude & 
Longitude

USGS Earthquake 
Data

Degree 
Decimal

Location of past activities to understand 
the trend

Depth USGS Historical 
Data

Kilometers 
(km)

The lower the depth, the more 
destructive power.

Magnitude USGS Historical 
Data

Moment 
Magnitude 
Scale

The higher the magnitude, the more the 
area of damage

Elevation SRTM Meters (m) The landslide post-seismic activity 
increases with an increase in elevation.

Population 
Density CENSUS Persons per 

km2
The greater the population density, the 
more the chances of casualties.

Land Cover Sentinel-2 -- Different categories of land have 
different susceptibility.

Lithology ESRI Data Catalog --

The more complex the geological 
formation of minerals, the lower the 
earthquake wave and the weaker the 
destructive power.

Distance 
from Stream Open Street Map Meters (m) The area closer to streams is more likely 

to be damaged.
Distance 
from Faults ESRI Data Catalog Meters (m) Areas nearer to faults have experienced 

more earthquakes in the past year.
Distance 
from Roads Open Street Map Meters (m) To ensure proper evacuation, the closer 

the road, the easier it is.
Table 1. Data inputs

The training and testing dataset had records from the year 1900-01-01 to 
2020-12-31.

In-Situ Calculations

The study used the magnitude values of the past earthquakes between 
1900-2022, which were collected from the USGS Earthquake Data Catalog. It 
associated those different magnitude values (regional, moment, body, etc.) to 
surface magnitude value using the following formulae:

Ms = mb-2.74/0.46

Ms = Mw-2.07/0.67

Where Ms is the surface magnitude, Mw is Moment Magnitude, and mb is 
the body magnitude. A magnitude based on the amplitude of Rayleigh surface 
waves measured at a period near 20 sec. Ms is primarily valuable for large 
(>6) shallow events, providing secondary confirmation on their size. After 
gathering the surface magnitude value, the peak ground acceleration value for 
each earthquake incident was calculated using Donovan’s

Formula:
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PGA = 1080 e 0.5 Ms (R+25)-1.32

Where Ms is the surface magnitude, R = Distance from the hypocentre to the 
event’s site (in Kilometers), and peak ground acceleration (PGA) equals the 
maximum ground acceleration during earthquake shaking at a location. PGA 
is a measure of how much ground shakes at a particular location during an 
earthquake event. It is calculated by looking at the highest acceleration record 
on an accelerogram device. To understand the severity of an earthquake event, 
damage intensity values are considered, which helps in correlating the damages 
caused by an event with the magnitude. 

Imm = 2.20 log (PGA) + 1.00	[for Ms values 3.5 to 5]

Imm = 3.66 log (PGA) - 1.66	[for Ms values 5+]

Each damage intensity value can be correlated to the modified Mercalli 
intensity values. Earthquakes cause different effects on the earth’s surface, 
known as the earthquake’s intensity. A scale has been developed to measure 
this intensity by considering the different observations of people who have 
experienced that event. This scale is called the Modified Mercalli Intensity 
scale and helps everyone understand the potential damage caused by the event. 

All these data points were segregated into a 70:30 ratio for training (19040 
records) & testing data (8160 records) and another validation dataset (another 
786 records) with a temporal gap of 6 months before the building of models. 19

Table 2. Modified Mercalli Intensity (MMI) scale. 24

Exploratory Data Analysis (EDA)

EDA is the first step in any modeling study. With the help of EDA, the 
relationship between various factors is established, and data patterns are also 
analyzed. It gives us a basic understanding of how and which factor affects 
the predictor variable the most. We are exploring the influence of various 
parameters before the architecture leads to a better understanding. While 
directly influencing the desired target parameter, the inputs do not account for 
the interaction between them. 



7

In this study, the damage intensity values for each of the earthquake events 
above magnitude 3.5 were calculated between the year 1900-2022; using the 
USGS earthquake explorer data, the location (latitude, longitude), magnitude, 
and depth (distance from hypocentre, in km) was extracted. Other datasets like 
land cover, population density, elevation, distance from roads, significant rivers, 
distance from fault lines, and lithology type information were compiled from the 
abovementioned sources. The earthquake incidents were categorized years, and their 
trend was studied, also the trend of earthquake incidents above magnitude 7. 18

Figure 2. Number of earthquakes from 1904-2022

Figure 3. Graph for earthquake above magnitude 7(1904-2022)

Figure 4. Correlation Matrix
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A correlation matrix was generated to understand the influence of the 
variables on each other by displaying the correlation coefficients for different 
variables. The correlation matrix depicted in Fig. 4 describes the potential level 
of influence between different parameters on a normalized scale. The image 
depicts the degree of influence between all the possible pairs of values used in 
this study.

The above correlation matrix shows that “distance from the fault line” 
negatively influences Z. This understanding is associated with higher elevations, 
like the Himalayan range, which tends to have fewer faults. Similarly, depth is 
inversely correlated to damage intensity at an extreme level. It can be confirmed 
that the more profound the epicenter, the shockwaves become weaker before it 
touches the surface. 

MODEL DEVELOPMENT

Artificial Neural Network (ANN)

“Artificial neural networks (ANNs) are biologically inspired computational 
networks (Y.-S. Park).” Artificial neural networks are computer programs 
that simulate how the human brain and nervous system process information. 
These networks comprise individual processing units called neurons connected 
through weighted connections known as synaptic weights. The neurons process 
information received from other neurons to generate an output signal, which 
is achieved using an activation function. Neural networks come in two main 
types: feed-forward and feed-back.

They must be trained using an algorithm to make neural networks effective 
in their respective tasks. One popular algorithm is the Rectified Linear Unit 
(ReLu) activation function. ReLu is a piecewise linear function that outputs the 
input directly if it is positive and zero if it is negative. This activation function 
is beneficial when dealing with nonlinear functions and is easily trained with 
multilayer Perceptron and convolutional neural networks. 16

The gradient descent algorithm is another important aspect of neural network 
training. It is an optimization algorithm used to solve machine-learning problems. 
This algorithm approaches the optimal solution of the objective function by 
obtaining the minimum loss function and related parameters. There are two 
types of gradient descent algorithms: batch gradient descent and stochastic 
gradient descent. Batch gradient descent calculates gradients for the whole 
dataset, which can be time-consuming for large datasets. On the other hand, 
stochastic gradient descent performs one update at a time, which makes it much 
faster. However, it has a higher variance that causes the objective function to 
fluctuate heavily. 25

The present study applies a Stochastic Gradient Descent transfer function 
with ReLu activation for the estimation of the seismic vulnerability of India.
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Figure 5. ANN Architecture

Eleven inputs (mentioned in the table –) have been used in the model. Over 
multiple iterations, 16 combinations of input hyperparameters were fine-tuned 
to provide the optimized parameterized model. The number of hidden layers 
was kept as two as it performed better than the multi-layer perceptron model. 
The study adapts the standard conditions by Heaton, which follows the 2n-1 
rule for the first hidden layer when selecting the number of nodes within each 
hidden layer, where n is the number of inputs and the 3n-1 rule for the second 
layer, making the first layer have 21 nodes and second layer have 62 nodes. 11

A two-layered artificial neural network was utilized for this study. The 
created datasets were segregated into a 70:30 ratio for training (19040 records) 
& testing data (8160 records). The model was trained and fine-tuned to optimize 
the results. 15

Figure 6. Hyperparameter curve for Hidden layers 2
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The number of hidden layers in a neural network is decided, keeping the 
complexity of datasets in mind. For this study, it was noticed that increasing 
the hidden layers beyond 2 saturates the model’s accuracy, thus resulting in 
overfitting of the model. 

Figure 7. Hyperparameter curve for Batch size 10

The model training started with taking a batch size of 64 and checking the 
accuracy against the same. Simultaneously, the batch size was decreased to 16; 
and it was observed that the accuracy achieved was the best in this case. Keeping 
a batch size of 16 meant that the entire training data would pass through the 
model in batches of 16 observations at a point while training the model. 

Figure 8. Hyperparameter curve for learning rate 3

The hyperparameter controls the rate of learning or speed at which the model 
learns. It regulates the number of allocated errors with which the model’s 
weights are updated. The learning rate value is in the range of 0.0 - 1.0. This 
study’s accuracy value started saturating upon increasing the learning rate value 
beyond 0.1. 
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Random Forest (RF)

A random forest is a type of classifier that comprises a set of tree-structured 
classifiers {h(x, Θk), k=1, ...}. Each tree in the random forest casts a unit vote 
for the most commonly occurring class for the given input x. Moreover, the 
{Θk} represents independently and identically distributed random vectors 
(Breiman, Leo). Random Forest is a computer program that helps classify or 
make predictions based on data. It is commonly used in many applications such 
as predicting whether a customer will buy a product or identifying whether an 
email is spam or not. It works by using many small decision trees together to 
make a final decision, rather than relying on just one tree. The algorithm creates 
different training subsets from the sample training data with replacement, 
meaning that it can use the same data points more than once, making it 
more accurate. These subsets are selected randomly from the dataset and are 
called bootstrap samples. Therefore, each decision tree or model is produced 
using samples from the original data, with replacement, in a process called 
Bootstrapping. Each model is trained independently, generating individual 
results. The outcome is then formed by calculating the average output of all the 
decision trees. This step is called Aggregating.

Figure 9. RF Architecture

In this study, specific model parameters called hyperparameters are fine-
tuned to improve the model’s performance. Random forest functions on 
the combination of multiple trees of varied degrees and levels. Each one is 
responsible for driving the model in an optimized form. The parameter “n_
estimators” defines the number of trees within the algorithm based on the 
model tuning. Typically, increasing the number of trees in the random forest 
model leads to more generalized results. However, this also increases the time 
complexity of the model. The model’s performance increases with the number 
of trees but levels off after a certain point. The “max_depth” parameter is 
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crucial, as it determines the longest path between the root and leaf nodes in 
each decision tree. Setting a large max_depth may result in overfitting. The 
“max_features” parameter determines the maximum number of input variables 
provided to each tree. The default value, which is the square root of the number 
of features in the dataset, is usually a good choice to consider.

A random forest was used to build several iterations of an RF model. Like 
ANN, the datasets created were randomly segregated into a 70:30 training and 
testing data ratio The process of optimizing the model involves adjusting certain 
parameters to improve its accuracy. These parameters include “n_estimators,” 
which refers to the number of decision trees generated, “max_depth,” which 
is the longest distance between the root node and the leaf node, and “max_
features,” which is the number of variables randomly selected as candidates at 
each node. The parameters were adjusted over several iterations of the model 
to assess how overall accuracy was affected by each. 

Figure 10. Validation curve for max_depth 6

It is essential to remember that max_depth is not the same thing as the depth 
of a decision tree. max_depth is a way to pre-prune a decision tree. This study 
observed that the model is achieving a threshold after max_depth 4. 10

Figure 11. Validation curve for n_estimators 13
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A higher number of decision trees gives better results but slows the processing. 
The model attained maximum accuracy at 40 n_estimators (number of decision 
trees).

Figure 12. Validation curve for max_feature 11

The max_features, if not specified, considers all the parameters. There are 11 
input parameters, and the model attains maximum accuracy by using any random 
5 of them. After this, it is sustained. Like ANN, the input and temporal periods 
are the same for the input dataset. This provides a better comparative capacity 
between the models. Within RF, the following fine- tuned parameterized values 
were identified for the final model. The following fine-tuned parameters are 
described in Table 3 –.

Hyperparameter Value

n_estimators 40

max_depth 4

max_features 5

Table 3 . Hyperparameters for RF

SENSITIVITY ANALYSIS

Sensitivity analysis is the label used for a collection of methods for evaluating 
how sensitive model output is to changes in parameter values (Franceschini S). 
Sensitivity analysis identifies which input variables are essential in contributing 
to the prediction of the output variable. It quantifies how the changes in the 
input parameters’ values alter the outcome variable’s value (Dowlatabadi) 
(Muriel Gevreya).

The one-dimensional sensitivity focuses on varying one parameter while 
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keeping the remaining constant. This can provide an understanding of the level 
of influence between the parameter and the output scale. For both the models, 
the mean values of input parameters were taken; for instance, in the case of 
depth, the mean value is 54.8 km, and the deviation of this value with 50% on 
either side of the mean value, i.e., plus and minus 25 km’s and the result shows 
that it shifted damage intensity from -1.42 to 1.48. The parameters like streams, 
roads & population showed minimal sensitivity toward the damage intensity. 
This is known as one-way sensitivity analysis since only one parameter is 
changed simultaneously. The analysis was repeated on different parameters at 
different times, and the values have been plotted in the graph below.

Figure 13. Sensitivity analysis for (a) ANN, (b) RF 20

RESULT

The training stage performance of both the models has been depicted in Fig —.

                                   (a)					     (b)

Figure 14. Training data scatter plot for (a) RF, (b) ANN 4

Data Points: 19040, (70% of 
the dataset) RF ANN

R2 (Coefficient of 
Correlation) 0.98 0.98

MAE (Mean Absolute Error) 0.08 0.07
PRMSE (Percentage Root 
Mean Square Error) 6.4% 6.08%

Table 4. Model performance (training dataset) 8
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Figure 15. Test data scatter plot for (a) RF, (b) ANN 3

Data Points: 8160, (30% of 
the dataset) RF ANN
R (Coefficient of 
Determination) 0.99 0.99
MAE (Mean Absolute Error) 0.08 0.08
PRMSE (Percentage Root 
Mean Square Error) 4.02% 7.49%

Table 5. Model performance (testing dataset) 8

From the scatter plots, the values obtained from the model are close to the 
actual values, along with some outlier values. Similar results were seen upon 
testing the model with the remaining 8160 points of the datasets. Other metrics 
like the coefficient of determination, mean absolute error, and percentage root 
mean square error was utilized to understand the model’s accuracy. From the 
table, it can be seen that the model is performing exceptionally well for both the 
training and testing dataset. 

Figure 16. Validation data scatter plot for (a) RF, (b) ANN 18
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Validation Dataset: June 
2021 – September 2022
Data Points: 789 RF ANN

R (Coefficient of 
Determination) 0.99 0.96
MAE (Mean Absolute Error) 0.08 0.22
PRMSE (Percentage Root 
Mean Square Error) 4.02% 7.51%

Table 6. Model performance (validation dataset) 4

Lastly, to rule out any temporal dependencies of the model on the dataset, a 
new dataset with six months of the temporal gap was run through the model. 
The training and testing datasets had events until December 2020, and the 
new dataset (Validation Dataset) with 789 data points consisted of the events 
post June 2021 until September 2022. For the validation dataset as well, it can 
be observed from the scatter plot and the metrics results that the model has 
performed exceptionally well.

Temporal Trend Analysis

The models performed fairly close; although the ANN model captured the 
peaks and dips of the damage intensity values, Random Forest performance 
was better in accuracy as it provided the average of the damage intensity values 
generated through each decision tree. Furthermore, a temporal analysis of the 
test dataset was plotted in Fig –to depict the trend comparison between the 
actual and model values. 

Figure 17. Validation Curves
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Upscaling to Spatial Scale

The resulting models were used to interpolate and upscale to a spatial scale 
of a 2 km grid. This approach will provide a good understanding of the spatial 
pattern and distribution over India. The classes were defined using the Modified 
Mercalli Intensity Scale as the reference to quantify the vulnerability. 8

Vulnerability Level MMI Scale Description
Very Low II Minor- rarely felt
Low III Minor- noticed by a few people
Moderate IV Light- felt by many people, minor damage
High V Significant damage

Very High VI-VII
Damage variables depend upon building 
construction and substrate

Table 7. MMI Scale levels

The following maps show the different vulnerability levels in India. It can be 
observed that even though the events of earthquakes are more frequent along 
the Northern belt, the vulnerability level is higher along the Southern coast. 
This means that if there is an earthquake of around the same magnitude along 
the northern belt and the southern coast, it would be more devastating along the 
southern coast. 

In the figure below, both the model outputs can be seen on the spatial front. It 
can be observed that most regions depicted as high and very high vulnerability 
areas are the regions where the frequency of earthquakes is lesser compared to 
the areas classified as shallow and low-risk areas. This means that an earthquake 
of magnitude will be more devastating for the regions along southern and 
central India, mainly because there is a lot of population and infrastructure 
concentrated in that area, thus resulting in more damage. 11

The following maps show the different vulnerability levels in India. It can be 
observed that even. 13

Figure 18. Seismic Vulnerability map for India (Model outputs) 
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CASE STUDY EXAMPLE

A risk map for the entire India can be generated using the Seismic vulnerability 
map. For example, a risk map for Satara district, Maharashtra, was generated as 
the application area of this study. The Satara district of Maharashtra experienced 
an earthquake of 5.0 magnitude on 16

September 2008. It has an area of 10,480 km2 and a population of 3,003,741, 
of which 14.17% were urban (as of 2011). Although the magnitude wasn’t much, 
the damage was alarming. Nearly 606 buildings were severely damaged in 110 
villages, and another 573 buildings in 92 villages in Patan taluka also inflicted 
minor damage within 100 kilometers of the epicenter. This engenders a need 
to be prepared if such an event happens again. For this purpose, a hazard map 
was generated from the Global Seismic Hazard map. The exposure map was 
created after overlaying maps of different areas like schools, banks, and other 
public spaces. Finally, a risk map was created. For Satara district to understand 
the potential losses in terms of lives, health, economy, and livelihood. The 
risk map was categorized into five risk levels, and the at-risk population was 
estimated. The risk map depicts that around 40 % of the district falls under 
moderate to high-risk levels, with 44 % of the population at risk. 17

                              (a)                                    (b)	                         (c)

Figure 19. (a) A hazard map,(b) a Vulnerability map, and (c) an Exposure map for the Satara 
district of Maharashtra

Figure 20. Satara district Risk level map 
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DISCUSSION

Both the models, Artificial Neural Network (ANN) and Random Forest (RF), 
worked quite well for this study. The performance of the models was similar in 
terms of accuracy; however, RF performed slightly better than the ANN model. 
As seen from the graphs and maps, the ANN model could capture the peaks and 
dips of the data values closely, giving a better geospatial representation.

However, in the case of the Random Forest model, the output values 
generated were closer to the actual values. Still, this model could not capture 
the high and low values as a random forest is a bagging ensemble model that 
takes the output values from all the decision trees and provides an average of 
those values as a final output. 

As this study has been done on a coarser resolution of 2 km X 2 km, moving 
forward, finer resolution datasets can be taken to understand the seismic 
vulnerability of an area. More parameters for the models can be added, like 
building materials, age-wise population, etc., can be taken to make the study 
more holistic. Lastly, other models like LSTM (Long Short Term Memory), 
TLBO (Teaching Learning Based Optimization), etc., can also be used for 
similar studies.

CONCLUSION

Earthquakes pose significant risks to human lives, infrastructure, and 
economies, making them one of the most dangerous and unpredictable natural 
hazards. Recent studies have focused on assessing the potential impact of a future 
earthquake in the Himalayan region, specifically in terms of magnitude and 
the resulting consequences. This study utilized a Machine Learning approach 
to model India’s earthquake vulnerability, considering various geological, 
physical, and social factors that contribute to seismic vulnerability. To estimate 
the potential impact, the study considered earthquakes in the past and calculated 
the damage intensity associated with each event. Machine Learning algorithms, 
specifically Artificial Neural Networks and Random

Forests, are employed to map the distribution of seismically vulnerable areas 
into five categories: Very High, High, Moderate, Low, and Very Low. Both the 
Artificial Neural Networks and Random Forest models demonstrated similar 
accuracy in predicting seismic vulnerability. The models used the collected data 
to generate a zonation map, categorizing regions based on their vulnerability 
to earthquakes. The map provides a visual representation of the exposure grid, 
indicating areas with varying degrees of vulnerability and potential damage 
intensity.

This analysis and vulnerability index map can be valuable tools for prioritizing 
regions that require immediate risk reduction interventions. Additionally, the 
vulnerability index map facilitates a comprehensive understanding of risk 
metrics associated with different areas, allowing for more targeted and effective 
risk reduction strategies. The findings can guide decision-makers in allocating 
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resources and implementing measures to minimize the potential loss of human 
lives and financial damage caused by future earthquakes. 22
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