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ABSTRACT 
Carbonate reservoirs are important targets for promoting the oil and gas reserve exploration and production in 
China. However, such reservoirs usually contain the developed complex pore structures, which heavily affect 
the precision in seismic prediction of petrophysical parameters. As one of the most important parameters 
to characterize reservoir rock, pore parameters can not only describe the pore structure, but also be used to 
evaluate the oil/gas bearing capabilities of potential reservoirs. The conventional rock-physics models (such as 
the Gassmann model) are established under the assumption of fully-connected pores, which cannot reasonably 
describe the geometrical complexity of real rocks. To characterize the effects of different pore types on the 
elastic moduli, this work proposes a rock-physics modeling method for carbonates, where the volume content 
of connected pores (defined as the pore-connectivity parameter) is quantified. The proposed method treats the 
pore-connectivity parameter as an objective parameter to characterize the spatial variations of pore structure. 
Specifically, the method combines the differential equivalent medium theory and the Gassmann model, and 
derives a linearized forward operator to quantitatively relate porosity, fluid saturation, and pore-connectivity 
parameter to the seismic elastic parameters. Based on the Bayesian linear inverse theory, the simultaneous 
inversion for petrophysical and pore-connectivity parameters are achieved. To characterize the statistical 
variations within the lithofacies, the Gaussian mixture model is introduced to describe the prior distribution of 
the objective parameters. The analytical expression for the posterior distribution of the objective parameters 
is obtained with the linearized forward operator. Numerical tests indicate that the accuracy of predicted elastic 
parameters by the proposed method is improved compared with the conventional Xu-White model and the 
varying pore aspect ratio method. The application to the field data validates the effectiveness of the method, 
wherein the porosity and fluid saturation results help indicating the spatial distribution of potential reservoirs.

KEY WORDS: carbonate reservoirs; DEM model; Gassmann model; the Xu-White model; 
Bayesian linear inversion; Gaussian mixture model
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INTRODUCTION

As most of the clastic oil and gas fields have faced the middle and late production 
stages, the exploration and development of carbonate reservoirs are gaining 
increasing attenuations (Cao et al. 2018). However, due to the sedimentation, 
diagenesis, and tectonic factors in the formation process, carbonates usually 
exhibit strong heterogeneity with non-uniform mineral distribution and internal 
properties, which may lead to the complex pore structures/types (Xu and Payne 
2009; Gharechelou et al. 2015). The pore complexity in carbonate reservoirs 
poses significant challenges for seismic/elastic predictions with conventional 
rock-physics modeling/inversion methods (Falahat and Farrokhnia 2020; 
Zhang et al. 2022). The pore structure/type (e.g., connectivity, geometry, etc.) 
has been demonstrated to be the significant factors that influence the elastic 
properties of carbonates (Assefa et al. 2003; Mirkamali et al. 2020; Garia et 
al. 2021). Therefore, to provide a more accurate description of the potential 
reservoirs, it is essential to consider the impacts of different pore types in 
modeling approaches.

To describe the compositions and structures of real rocks, the rock-
physics model establishes theoretical frameworks for quantifying the internal 
correlations between elastic and reservoir-property parameters of rocks, which 
provides a fundamental basis for probing into the seismic petrophysical forward 
modeling and inversion (Keys and Xu 2002; Mavko et al. 2013; Ba et al. 2017). 
The rock can be assumed as a complex porous multiphase medium consisting 
of minerals, pore spaces, and fluid within these pores. Therefore, reservoir 
rocks can be simplified as equivalent mediums to investigate the elastic or 
petrophysical characteristics based on the mathematical and physical principles. 
For the estimation of the equivalent elastic moduli of solid rocks, various well-
established rock-physics models have been developed, for example, the Voigt-
Reuss-Hill average (Hill 1952), the Kuster-Toksӧz model for the sparsely 
distributed inclusions (Kuster and Toksӧz 1974), the self-consistent model 
(Berryman 1980), and the differential equivalent medium (DEM) model (Cleary 
et al. 1980; Norris 1985; Zimmerman 1985). In consideration of the impact 
of pore fluid, Gassmann (1951) proposed the equations of elastic moduli of 
saturated porous rocks and formulated the Gassmann equations, which have 
been extensively applied for predicting the elastic properties of fluid-saturated 
rocks. In particular, the rock-physics modeling approach proposed by Xu and 
White (1995) integrated the differential equivalent medium model, Kuster-
Toksӧz model, and Gassmann equation to characterize the sands and mudstones. 
Notably, the Xu-White model introduced a simplified classification of pores 
into sand-related hard pores and clay-related soft pores. As an extension to 
the Xu-White model, Xu and Payne (2009) proposed to classify the carbonate 
pores as moldic, interparticle, and microcrack porosities, which addresses the 
multiple pore types in rock-physics modeling.
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Seismic petrophysical inversion method plays a crucial role in the prediction 
of oil/gas reservoirs by inferring subsurface reservoir properties with recorded 
seismic data. Typically, the inversion requires the established petrophysical 
forward model, and incorporates the prior constraint information, based on 
which optimization algorithm is employed to achieve the estimation of model 
parameters. Due to the influence of model error and noise, the inversion 
solution is non-unique. Therefore, it is essential to express the inversion 
result in terms of probability distribution with quantified uncertainty for the 
model parameters. The Bayesian approach, which is widely used in handling 
geophysical inversion problems, effectively incorporates prior information into 
the solution and facilitates the evaluation of the result uncertainties (Gunning 
and Glinsky 2007; Chen et al. 2017; Pan et al. 2019; Fjeldstad and Omre 2020; 
Qin et al. 2021; Ji and Zong 2023). According to the inversion algorithm, the 
Bayesian approach can be categorized into the deterministic inversion and the 
stochastic inversion. The former usually assumes that the model parameters 
follow a Gaussian distribution with a linear forward operator. Based on this 
assumption, it is possible to derive an analytical expression for the solution of 
the inversion problem (i.e., the posterior expectation and covariance) (Grana et 
al. 2017; Luo et al. 2023). The primary objective of stochastic inversion is to 
address highly nonlinear inversion problems that lack any analytical expression 
of the solution. In the case of high nonlinearity, the solution can be obtained 
by inferring the likelihood function through stochastic sampling or global 
optimization algorithms (Yin et al. 2014; Azevedo et al. 2017). Particularly the 
nonlinear petrophysical forward model can also be locally linearized by using 
the Taylor series expansion so as to obtain the analytical representation for 
the Bayesian inversion (Grana 2016). Grana et al. (2017) proposed a Bayesian 
linear inversion method based on the Gaussian mixture model. This approach 
introduces a recursive exact formula to approximate the posterior distribution 
of the inversion problem, taking into account the variations in statistical 
distributions of model parameters with different lithofacies. In summary, 
deterministic inversion method provides efficient and stabilized solutions 
to the inversion problem. However, stochastic inversion method can handle 
nonlinear problem but it involves iterative sampling or optimization that often 
requires extensive forward computations and suffers from drawbacks such as 
low computational efficiency and unstable inversion results.

For seismic petrophysical inversion applications, porosity, fluid saturation, 
and mineral content are commonly considered as the objective variables to be 
estimated. Compared with the conventional sandstone reservoirs, carbonates 
exhibit complex pore structures, which are characterized by the coexisting of 
two or more distinct pore types (Weger et al. 2009; Bemer et al. 2019). Therefore, 
it becomes particularly crucial to employ multiple variables for effectively 
characterizing these complex pore types. For instance, the pore geometry can be 
incorporated as an intermediate variable to assist the inversion of petrophysical 
parameters by Guo et al. (2022), which effectively characterizes the spatial 
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variation of pore structure in carbonate reservoirs. In addition to pore geometry, 
the pore connectivity affects elastic or oil/gas-bearing properties in carbonates. 
Ishola et al. (2022) demonstrated the prominent effect of pore connectivity on 
permeability and hydraulic bending of highly heterogeneous porous medias 
such as carbonate rocks with a stochastic 3D pore scale simulation method. In 
particular, rock permeability is proven to be largely influenced by pore geometry 
or structure, which leads to connected and isolated pores in carbonates (Zhang 
et al. 2022; Dias et al. 2023). On the other hand, rock elastic properties of 
pore-filling fluid with connected pores is different from those regarding isolated 
pores in rock-physics modeling (Carcione et al. 2011; Panizza and Ravazzoli 
2019; Wang et al. 2020), e.g., the Gassmann and DEM models basically assume 
fully-connected and isolated pores, respectively. Therefore, for carbonate rock-
physics modeling and inversion, the consideration of different pore structures 
and the associated connectivity is critical for improving the accuracy of reservoir 
prediction and characterization.

To address the aforementioned issues, we propose a rock-physics modeling 
and Bayesian seismic petrophysical inversion method for carbonate reservoirs. 
The method takes into account the combined influence of isolated and 
connected pores, which quantifies the percentage of connected pores as the 
pore connectivity parameter. By utilizing the decoupled DEM model and the 
Gassmann equation, the seismic rock-physics forward operator is derived to link 
petrophysical parameters (porosity and water saturation) and pore parameter 
(pore connectivity parameter) to elastic parameters (P- and S-wave velocities 
and density). The Gaussian mixture model is employed to characterize the prior 
probability distribution of the objective variables, including petrophysical and 
pore parameters, to capture the statistical differences among lithofacies. We 
derive the linearized forward operator with the Taylor expansion and obtain the 
analytical expression of the posterior probability distribution for the objective 
variables with the Bayesian linear inversion method. The proposed linearized 
inversion method has the advantage of computational efficiency. Particularly, 
the pore connectivity parameter is adopted as one of the objective variables, 
which assists with the characterization of pore structures and the improvement 
of rock-physics modeling accuracy.

METHODOLOGY AND THEORY

Rock Physics Modeling

According to the matrix-skeleton-fluid rock-physics modeling method, the 
modeling process of carbonate reservoirs primarily involve calculating the 
elastic moduli of rock matrix/pore fluid, rock skeleton, and fluid-saturated rock. 
The equivalent elastic moduli of rock matrix can be determined with the Voigt-
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Reuss-Hill (VRH) average.

The bulk modulus Kd and shear modulus μd of rock skeleton can be determined 
with the utilization of the decoupled differential equivalent medium (DEM) 
model according to Keys and Xu (2002),

( )
d m (1 )PK K αφ= − ,                    (1)

( )
d m (1 )Q αµ µ φ= − ,                 (2)

where Km and μm are the bulk and shear moduli of rock matrix, respectively, 
ϕ is the porosity, and P and Q are the polarization factors related to the pore 
aspect ratio α (Berryman 1980).

By assuming that pore fluid is the brine and hydrocarbon mixture, the fluid 
bulk modulus (Kf) is computed with the Wood model (Mavko et al. 2009),
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where Sw is water saturation, and Kw and Kh are the bulk moduli of brine and 
hydrocarbon, respectively. The bulk modulus Ks and shear modulus μs of fluid-
saturated rock can be obtained by the Gassmann equation,
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s dµ µ= .                    (5)

To consider the complex pore structures in carbonates and improve modeling 
accuracy, we divide the pore spaces into two parts, i.e., connected and isolated 
pores, based on which the percentage content of connected pores is defined 
(referred as the pore-connectivity parameter β). The total porosity ϕt is thereby 
partitioned into connected-pore porosity ϕcon and isolated-pore porosity ϕdis 
,which satisfy ϕcon=β · ϕt and ϕdis=(1-β) · ϕt. In practice, the elastic moduli 
of saturated rocks with the two types of pores are computed separately. It is 
considered that the connected pores represent pore spaces that are connected 
with each other, while the isolated pores represent sealed and isolated pores; the 
fluid mixture movement mainly occurs between the connected pores. 

The moduli of saturated rock with connected pores are estimated by using 
the Gassmann equation, which follows the conventional Xu-White model,
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con dryµ µ= ,                      (7)

where Kcon and μcon represent the bulk and shear moduli of fluid-saturated 
rock with connected pores, respectively, and ϕcon represents the connected-pore 
porosity. 

Since the Gassmann model is based on the fully-connected pore assumption, 
we estimate the saturated rock moduli with isolated pores by the decoupled 
DEM model (Keys and Xu 2002),

( )dis m dis1 PK K φ= − ,                   (8)

( )dis m dis1 Qµ µ φ= − ,                 (9)

where Kdis and μdis represent the bulk and shear moduli of saturated rock 
with isolated pores, respectively, and ϕdis represents the isolated pore porosity. 
The modeling process with equations (6)-(7) and (8)-(9) are referred as the 
connected- and isolated-pore models, respectively.

Then, we employ the VRH average to estimate the overall elastic properties 
jointly affected by the connected and isolated pores, in which the two types of 
pores are weighted by the pore-connectivity parameter in the estimation,
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where Kcmb and μcmb represent the weighted bulk and shear moduli of saturated 
rock, respectively.

Finally, according to the elastic moduli of saturated rock, the elastic 
parameters of rock (P-wave velocity VP-cmb, S-wave velocity VS-cmb and density 
ρ) are computed as
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= ,                   (13)

( )( )w w w h m1 (1 )S Sρ φ ρ ρ φ ρ= + − + − ,               (14)

where ρw, ρm, ρh and ρ are the brine, rock matrix, hydrocarbon, and bulk 
densities, respectively.
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Due to the complexity of real rock structure, it is difficult to determine the 
content of connected or isolated pores at different depth ranges. In this regard, 
we define the percentage of connected pores β (the pore-connectivity parameter) 
as a pending variable and try to estimate it based on the observed P- and S-wave 
velocities of well log data.

Linearized Forward Operator

According to the established DEM-Gassmann rock-physics modeling 
process, porosity, water saturation and pore connectivity parameters are treated 
as objective variables, and the forward operator of quantitative correlation 
between the objective variables and elastic parameters can be expressed as

( )= +m F r e ,                   (15)

where m=[VP, VS, ρ]T denotes the elastic parameters, r=[ϕ, Sw, β]T denotes 
the objective variables, F denotes the forward operator by combining equations 
(1)-(14), and e is the modeling error. The linearized forward model is obtained 
by performing a first-order Taylor approximation to equation (15),

( )o o= −c F r Dr ,                    (16)

( )o o= −c F r Dr ,                  (17)

where ro represents the approximated objective variable for the Taylor 
approximation, c is a constant that can be subtracted from the seismic elastic 
data m during the calculations, and D refers to the linearized forward operator,
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The linear forward operator D is the Jacobian matrix, which represents the 
partial derivatives of the seismic petrophysical forward operator F with respect 
to r. It can be referred with Appendix for the detailed expressions of these 
partial derivatives.

Rock Physics Inversion

From a statistical perspective, the reservoir parameters typically exhibit 
a multi-modal distribution due to variations in lithofacies and their physical 
properties. Hence, we employ a Gaussian mixture model (Grana et al. 2017) 
to represent the prior distribution. This prior distribution is expressed as the 
arithmetic average of Gaussian distributions,



8

1
( ) ( ; , )

C
k k

k k
k

P Nφ
=

=∑ r rr rìÓ ,                  (19)

where Nk represents the kth Gaussian distribution, μr
k, Σr

k, and ϕk are the 
mean, covariance, and weight coefficients of Nk, respectively, and C is the total 
number of Gaussian distributions. In practice, the Gaussian mixture model 
(mean, covariance, and weight coefficients) of the objective variables can 
be computed by using the expectation-maximization algorithm (Hastie et al. 
2009), based on the sample data of pore connectivity parameter estimated from 
well-side P-/S-wave velocities and measured porosity and water saturation. 

For the linearized model as expressed in equation (16), if we assume the 
data error exhibits a normal distribution with zero-mean N(e; 0, Σe), and the 
likelihood probability P(m|r) is determined by the linearized model, then the 
conditional probability P(r|m) also satisfies a Gaussian mixture distribution 
with the analytical expression (Grana et al. 2017) for the conditional mean, 
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The final inversion result of the objective variables is the weighted mean of 
the posterior mean
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In practice, to improve computational efficiency, we employ the Bayesian 
linear inversion method based on the Aki-Richards approximation (Buland et al. 
2003) for obtaining the elastic parameters of m. Furthermore, considering that 
the linearized model heavily relies on the approximate points and initial models, 
we adopt an iterative Bayesian inversion method (Lang and Grana 2018) for 
subsequent inversions to improve the modeling accuracy. The posterior mean 
of Bayesian linear inversion is utilized as the initial model in each iteration of 
inversion process. The inversion process terminates until either the difference 
between the predicted and observed data falls below a pre-defined threshold or 
the maximum iterations are reached.

In summary, the proposed method involves the pore-connectivity parameter 
inversion and rock-physics modeling. The specific process of the proposed 
method is depicted in Figure 1. According to equation (19), the expectation-
maximization algorithm is utilized for estimating the Gaussian mixture model. 
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The iterative Bayesian inversion, as per equations (20)-(23), is employed to 
obtain the objective variables. In practice, the number of Gaussian components 
is set to 2 assuming two lithofacies. The threshold for ending the iteration is set 
as 1% of the initial residual value and the maximum iteration is 10.

Figure 1. Flowchart of the seismic rock-physics inversion method for petrophysical and 
pore parameters

图中修改， Elastic moduli!

Posterior 还是 Posteriori!?

Well Log Data Test

The well logging data from a carbonate reservoir of northwest China have 
been selected for testing and verification. Figure 2 shows the log data of well 
A, including P- and S-wave velocities, density, porosity, and water saturation. 
The reservoir in this area primarily consists of karst carbonates, which exhibit 
complex crack and cavity distribution with strong heterogeneities. The identified 
target layer (2.045~2.072 s) is predominantly composed of pure dolomite with 
a minor presence of limestone 哪哪哪哪. Table 1 presents the rock and fluid 
properties of carbonates. To describe the complex pore structure in carbonates, 
the proposed method reformulates the Xu-White model by combining the DEM 
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model and the Gassmann equation so as to incorporate the joint influences 
of isolated and connected pores. In the rock-physics modeling, the pore 
connectivity parameter represents the proportion of interconnected pores and 
serves as a weighting coefficient for adjusting the general elastic properties of 
different pore types in fluid-saturated rocks. In addition, such a pore parameter 
helps revealing the pore connectivity/permeability of carbonates to some extent, 
thereby improves the rock-physics modeling accuracy.

Figure 2. Well log data of (a) P-wave velocity, (b) S-wave velocity, (c) density, (d) porosity, 
and (e) water saturation.

Table 1 Rock and fluid properties for the carbonates.

Dolomite Limestone Brine

Bulk modulus (GPa) 94 76.8 2.3

Shear modulus (GPa) 39 32 /

Density (g/cm3) 2.87 2.71 1.05

Before the inversion, to illustrate the complexity of the pore structure of 
reservoirs, the Xu-White model is adopted as the connected-pore model, while 
the DEM model as the isolated-pore model to predict the elastic parameters 
around the well, respectively. The rock-physics modeling result with the 
conventional Xu-White model (with a constant pore aspect ratio of 0.15) is 
given in figure 3. By analyzing the prediction (see figure 3), it is apparent 
that the elastic parameters predicted by the conventional method exhibit the 
deviations from the log curve. The prediction gives the correlation coefficients 
of 0.8576 (VP), 0.8264 (VS), and 0.6367 (ρ) with respect to log data, and thereby 
only provide a general indication of the trend observed at the target layer.
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Figure 3. Predicted results of (a) P-wave velocity, (b) S-wave velocity, and (c) density by the 
conventional Xu-White model (connected-pore model) with a constant pore aspect ratio in 
comparison with the log curves.

For the comparison, the rock-physics modeling with the DEM model is 
shown in figure 4. By analyzing the results in figures 3 and 4, it is revealed 
that the prediction using only the connected-pore model (figure 3) generally 
underestimates the true value compared with the log data, whilst the isolated- 
pore model (figure 4) overestimates. For the connected-pore model, the stiffening 
effect caused by the isolated pores are neglected, and a softer rock frame is 
assumed. On the other hand, for the isolated-pore model, the equilibrium effect 
of pore fluid pressure gradient induced by elastic waves is neglected, so that 
no relaxation occurs. For each of the two models, there exists errors in the 
predictions due to the assumption of a single-porosity condition. The difference 
between the predicted and measured curves at some depths is obvious, which 
may cause the errors for the relevant rock-physics inversion.
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Figure 4. Predicted results of (a) P-wave velocity, (b) S-wave velocity, and (c) density by the 
DEM model (isolated-pore model) with a constant pore aspect ratio in comparison with the 
log curves.

The illustration in figures 3 and 4 indicates the conventional rock-physics 
modeling fails to provide a reasonable prediction of elastic properties for the 
carbonates with pore complexity. We hereby predict the pore-connectivity 
parameter based on equations (15)-(17), taking into account the overall elastic 
responses of the intricate pore structure. The pore-connectivity parameter 
estimated from the observed P- and S-wave velocities at well A is illustrated 
in figure 5d, based on which the velocities and density are predicted by the 
proposed method, along with a comparison with the log data (see figure 5a-c). 
Figure 6 overlaps the results predicted by the proposed method and that by the 
Xu-White model (figure 3), which shows that the proposed method achieves 
an apparent agreement with the log data (marked with the arrows in figure 6). 

We also compare the proposed method with the method proposed by Guo et 
al. (2023). The latter (referred as the varying aspect-ratio method) addresses 
the pore complexity of carbonates by estimating the spatially-varying pore 
aspect ratio, which estimates the pore aspect ratio with observed P- and S-wave 
velocities based on the DEM model and the Gassmann equation under the 
Bayesian framework. Figure 7d shows the estimated pore aspect ratio of the 
study area, where the pore geometry reveals the spatial variation of reservoir 
pore types to a certain extent. Although, the prediction by the varying aspect-
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ratio method generally matches well with the log data, the comparison between 
the two methods shows a slight improvement achieved by the proposed method 
(see figure 8). In summary, Table 2 shows the correlation coefficients between 
the log data and those predictions of figures 3, 5, and 7. The proposed method, 
which takes into account the interaction between connected and isolated pores, 
exhibits the best agreement (the highest correlation coefficient) with the well 
log data compared to both the varying aspect-ratio method (Guo et al. 2023) 
and the conventional Xu-White model.

Figure 5. Predicted results of (a) P-wave velocity, (b) S-wave velocity, (c) density, and (d) 
pore connectivity parameter by the proposed method, in comparison with the log curves.

Figure 6. Comparison between the predicted results of (a) P-wave velocity, (b) S-wave velocity, 
and (c) density by the proposed method (red curves) and the Xu-White model (blue curves).
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Figure 7. Predicted results of (a) P-wave velocity, (b) S-wave velocity, (c) density, and (d) 
pore aspect ratio by the method by Guo et al. (2023), in comparison with the log curves.

Figure 8. Comparison between the predicted results of (a) P-wave velocity, (b) S-wave 
velocity, and (c) density by the proposed method (red curves) and the method by Guo et al. 
(2023) (blue curves).
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Table 2 Correlation coefficients between the log data and the predicted results of figures 3, 5, and 7.

Vp Vs

Xu-White model 0.8576 0.8264

Varying aspect-ratio 
method 0.9472 0.8905

Proposed model 0.9605 0.8908

Seismic Section Application

We apply the proposed method to the field seismic profile data obtained from 
a carbonate reservoir of southwest China. The field seismic data is from the 
same working area as the well log data in the previous tests. The reservoir 
pore space is complex and diverse, which has a great influence on the elastic 
properties of rocks. The proposed method which incorporates the variation of 
pore structures can be employed for predicting porosity and water saturation as 
well as the pore-connectivity parameter. Furthermore, it enables the evaluation 
of favorable reservoir areas within the work area. The survey line crossing the 
two wells is extracted for the application, which is shown in figure 9. The target 
layer has a depth range of approximately 4610-4704 m, with the corresponding 
time depth range of 2072-2045ms at well B.

Figure 9. Stacked seismic section of the 2D survey line with the two wells located at the 165 
and 601 CDPs.
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Figure 10. Sections of P- (a) and S- (b) wave velocities and density (c) from prestack seismic 
inversion for the survey line.
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Figure 11. Inversion results of (a) porosity and (b) water saturation by the proposed method 
for the survey line.

Figure 12. Inversion result of pore-connectivity parameter by the proposed method for the 
survey line.
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The elastic data of P-/S-wave velocities and density sections (figure 10) are 
obtained through the prestack seismic inversion (Buland et al. 2003) of the 
survey line. Based on the elastic data, the porosity, water saturation, and pore 
connectivity parameters are simultaneously inverted by using the proposed 
method. The prediction results of porosity and water saturation are shown in 
figure 11. Wells A and B were utilized for the validation of the inverted sections. 
Based on the production reports, the gas test results indicate that well B is a 
highly productive gas well, producing 1.047 million m3/d of gas, while well 
A has a water production rate of 591 m3/d. In the prediction results of figure 
11, the zone of high porosity and low water saturation area (~165 CDP) is 
generally consistent with the proven gas bearing reservoir of well A; the high 
water saturation area (~600 CDP, figure 11b) also accords with the location 
of well B (water producing). Besides, figure 12 shows the section of inverted 
pore-connectivity parameter. Although the inverted result can not be verified 
since there is no observed pore connectivity data, it indicates the relatively high 
connectivity around the production well. The inverted petrophysical and pore 
parameters can be helpful in identifying the potential gas reservoirs.

CONCLUSION

The present study proposes a rock-physics modeling and inversion method 
for carbonate reservoirs which considers the impacts of different pore types 
(connected and isolated pores) on the elastic properties. The elastic properties 
of fluid-saturated rocks are often underestimated or overestimated due to the 
presence of connected or isolated pores. In this regard, the DEM model can 
be employed to account for the influence of isolated pores on fluid-containing 
rocks while the Xu-White model for the connected pores. Based on the rock-
physics modeling, the seismic petrophysical inversion is proposed to jointly 
estimate petrophysical and pore-connectivity parameters.

Compared with the conventional Xu-White model that assumes fully-
connected pores, the predicted P- and S-wave velocities by the proposed method 
show an improved agreement with the well log data. The proposed method is 
also compared with the modeling method with spatially-varying pore aspect 
ratio, which shows the good performance on capturing pore complexity in 
carbonates. The application of seismic survey line validates the validity of the 
method, and the inversion results for porosity and water saturation effectively 
indicate the spatial distribution of favorable reservoirs. The estimated pore-
connectivity parameter can assist with identifying gas-bearing regions being 
characterized by the relatively higher permeability.

However, the linearized model is unable to fully capture the highly nonlinear 
relationships between the petrophysical properties and elastic parameters, 
so the modeling accuracy is limited under the certain conditions. The pore-
connectivity parameter serves as an auxiliary variable that accounts for the 
effects of different pore types, which fails to accurately depict the intricate 
details of pore structure within carbonate rocks.
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Appendix. Partial Derivative of Linearized Forward Model
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The partial derivative of P-wave velocity with respect to water saturation is 
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