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ABSTRACT 

Liu, X.B., Chen, J.Y., Lan, H.Q. and Zhao, Z.C., 2018. Seismic wavefield simulation 
with irregular surface topography and Graphic Processing Unit (GPU) implementation. 
Journal of Seismic Exploration, 27: 445-472.  

 Seismic	 wavefield	 simulation	 in	 the	 presence	 of	 surface	 topography	 provides	
important	 information	 for	 characterizing	 seismic	wave	 propagation.	 Based	 on	 the	
boundary-conforming	grid	method,	we	first	 transform	both	elastic	wave	equations	
in	 second-order	 formulation	 and	 free	 surface	 boundary	 condition	 in	 first	 order	
system	 from	 Cartesian	 coordinates	 to	 curvilinear	 coordinates.	 Then,	 the	
convolutional	 perfectly	 matched	 layer	 (CPML)	 boundary	 condition	 is	 applied	 to	
absorb	 the	 outgoing	 seismic	waves	 at	 the	 edges	 of	 the	 truncated	model.	 The	 test	
results	 (e.g.,	 wavefield	 snapshots	 and	 seismograms)	 show	 that	 our	 numerical	
algorithms	can	effectively	simulate	seismic	wave	propagation	in	a	model	with	rough	
topography,	 and	 CPML	 is	 more	 efficient	 than	 perfectly	 matched	 layer	 (PML)	
boundary	 condition	 in	 suppressing	 artificial	 reflections.	 In	 addition,	 the	
finite-difference	algorithms	on	a	 single	Graphic	Processing	Unit	 (GPU)	are	used	 to	
accelerate	 seismic	 numerical	 modeling	 in	 both	 elastic	 isotropic	 and	 anisotropic	
media.	 Compared	 with	 the	 conventional	 CPU	 version,	 the	 GPU	 implementation	
greatly	reduces	the	computational	cost.	
 
KEY WORDS: wavefield simulation, surface topography, finite-difference, 
      convolutional perfectly matched layer, Graphic Processing Unit, GPU.    
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INTRODUCTION 

In land seismic surveys, seismic signals are usually recorded by 
geophones at the surface of the earth. The earth’s complex topography (e.g., 
mountain and basin areas) makes it necessary for us to simulate seismic 
wave propagation in a medium with irregular topography. In the last four 
decades, there have mainly been two kinds of schemes to deal with a model 
with rough topography: (1) a fictitious layer is added above the free surface 
(Alterman and Karal, 1968; Vidale and Clayton, 1986); (2) derivatives are 
substituted to the free surface without any fictitious layer above the free 
surface (e.g., composed approximation, remedy scheme and boundary- 
conforming grid) (Ilan et al., 1975; Ilan, 1978; Nielsen et al., 1994; Nilsson 
et al., 2007; Appelö and Petersson, 2009; Lan and Zhang, 2011; Sofronov et 
al., 2015). In our study, we use the boundary-conforming grid method 
because of its easy implementation (Appelö and Petersson, 2009). Among 
the numerical algorithms available, the spectral element and finite element 
methods satisfy the free surface naturally but suffer from high computational 
costs or inaccuracy problems (Komatitsch and Tromp, 1999; Tessmer et al., 
1992). The combination of the finite element and finite-difference methods 
makes an algorithm suitable for the complex near surface part but it still 
suffers from high computational costs (Galis et al., 2008; Lisitsa et al., 2016). 
Compared with spectral element, finite element and hybrid finite-difference 
methods, the finite-difference method became more effective for modeling 
seismic wave propagation with free surface topography since Nilsson et al. 
(2007) proposed a boundary modified difference approximation in the 
Cartesian system. This new boundary modified difference method makes 
numerical computing with an irregular free surface easier, more flexible and 
stable. Appelö and Petersson (2009) extended this stable discretization into 
curvilinear coordinates to handle the free surface boundary conditions in 
elastic isotropic media. Lan and Zhang (2011) further extended this scheme 
to seismic wavefield simulation in anisotropic media. Compared with only 
transforming the vertical coordinate in the curvilinear scheme proposed by 
Tarrass et al. (2011), both vertical and lateral coordinates are transformed 
from the Cartesian to curvilinear coordinates. This kind of transformation 
can deal with more complex topography. However, the absorbing boundary 
condition (Cerjan et al., 1985; Chen et al., 2010) used in their studies was 
not working well to suppress the unwanted reflections from the boundaries 
of the model. 

   
Bérenger (1994) first introduced the perfectly matched layer (PML) 

boundary condition and proved its efficiency compared to classic boundary 
conditions. It is widely used in seismic numerical modeling since it was 
proposed (Abarbanel et al., 1999; Collino and Tsogka, 2001; Komatitsch and 
Tromp, 2003). Then, in order to improve the behavior of PML at grazing 
incidence, a convolutional perfectly matched layer (CPML) was proposed by 
Roden and Gedney (2000). Komatitsch and Martin (2007) further proved 
that CPML has better behavior than PML at grazing incidence for the 
differential seismic wave equations, especially for the case of a source 
located close to the edge. Lan et al. (2016) applied the perfectly matched 
layer ( PML ) boundary condition to  2D  elastic isotropic media with rough   
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topography. Here, we will adopt the CPML to both 2D elastic isotropic and 
anisotropic media in order to take advantage of its significant absorbing 
performance. CPML has proved to be highly effective at absorbing artificial 
reflections and surface waves since it was proposed for electromagnetic 
media (Roden and Gedny, 2000). Usually, CPML is used in first order 
velocity-stress equations (Drossaert and Giannopoulos, 2007; Martin et al., 
2008). Li and Matar (2010) extended it into second-order elastodynamic 
equations in the Cartesian coordinate system. But they did not deal with the 
need to suppress artificial scattered waves at the free surface. In this study, 
we will implement both CPML and free surface boundary conditions for 
simulating seismic wavefield propagation in elastic isotropic and anisotropic 
media with an irregular free surface in the curvilinear coordinate system. 
The elastic wave equations and free surface boundary condition are 
second-order and first order formulations, respectively. The numerical 
results show that CPML is successfully applied to seismic wave equations 
with an irregular free surface in the curvilinear coordinate system. 

 
Another limitation of seismic wavefield simulation is that it suffers 

from high computational costs. To solve this problem, geophysicists not 
only optimize the algorithm but also adopt new computing technologies. In 
recent years, Graphic Processing Unit (GPU) parallel computing has gained 
more and more popularity in many scientific fields, such as physics, 
geophysics, and computer science (Preis, 2011; Panetta et al., 2009). A 
number of geophysical problems have been solved using GPUs, such as 
wavefield simulation (Michéa and Komatisch, 2010), reverse time migration 
(Micikevicius, 2009; Abdelkhalek et al., 2009; Liu et al., 2012) and full 
waveform inversion (Shin et al., 2014; Yang et al., 2015; Liu et al., 2015). In 
this paper, we carry out parallel computing using a NVIDIA® GPU card 
(Tesla C2075) to accelerate the numerical simulation of seismic wave 
propagation. CPU and GPU runtimes are compared to show parallel 
computing efficiency. 

 
This paper is organized as follows. First, we transform the 2D elastic 

wave equation and irregular free surface boundary condition from the 
Cartesian coordinate system to the curvilinear coordinate system. Second, 
we incorporate a CPML boundary condition to the wave equations in 
curvilinear coordinates to absorb the outgoing waves at the boundaries of the 
model. Finally, through elastic elongated model studies in seismic wavefield 
snapshots, seismograms and energy decay, we show that CPML has better 
absorbing behavior than PML, and GPU processing effectively accelerates 
seismic wavefield simulation. 

 
 

SEISMIC NUMERICAL MODELING WITH IRREGULAR FREE 
SURFACE 
 

In the Cartesian coordinates, the 2D elastic wave equations in the 
time domain (Lan et al., 2011) are given by 
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where cij(x,z) are the elastic parameters; u and v are the displacements along 
the x and z directions; ( )zx,ρ  is the density of the material. 
 

At the surface, the free surface boundary condition in the Cartesian 
coordinates (Lan et al., 2011) is expressed by 
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For rough topography, the boundary conforming grid is used to 

describe the free surface and suppress the artificial scattered waves 
(Thompson et al., 1985; Hvid, 1994). It can be achieved by the 
transformation between curvilinear computational space and Cartesian 
physical space as shown in Fig. 1. 

 
 Fig. 1. Mapping between computational space and physical space in two dimensions 
(Lan and Zhang, 2011). 
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The relationship between Cartesian coordinates and curvilinear 
coordinates can be found in Appendix A. Using relationships (A2) - (A3), 
the wave eqs. (1a) - (1b) can be rewritten in the curvilinear coordinate 
systems as (Lan et al., 2011) 
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Also, using relationships (A-2) - (A-3), the free surface boundary 

condition (2) can be rewritten in the curvilinear coordinate systems as 
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Thus, 2D elastic wave equations and irregular free surface have 

been implemented in the time domain in curvilinear coordinates. In order to 
add the convolutional perfectly matched layer (CPML) boundary condition 
to wave eqs. (3a) - (3b), a Fourier transform is used to convert them from 
the time domain to the frequency domain. Seismic waves are attenuated and 
decay exponentially when they enter the absorbing layer. Even if the 
seismic waves reflect from the boundary, after one round trip through the 
absorbing layer, they have exponentially decayed. Collino and Tsogka 
(2001) proposed that the CPML can be viewed as an analytical contribution 



 450 

of the real coordinates in the complex space. Then, the complex coordinates 
(q~  and r~ ) transformations are (Li and Matar, 2010) 

( )dqqSq
q

q∫=
0

~
,              (5a) 

( )drrSr
r

r∫=
0

~
,                (5b) 

where Sq and Sr  are the complex frequency shifted (CFS) PML proposed by 
Kuzuoglu and Mittra (1996). The stretched coordinate metrics are 
 

  ωα i
d

kS
q

q
q +
+=q

 
,             (6a) 

  ωα i
dkS
r

r
r +
+=r

 
,               (6b) 

 
where dq and rd  are attenuation factors along q  and r  directions; 0≥qα , 

0≥rα , 1≥qk  and 1≥rk . Particularly, we get the classical PML coordinate 
transformation when 0== rq αα  and 1== rq kk . In this paper, we take 

1== rq kk , and αmax = π f0  as the maximum value for qα  and rα which both 
decrease linearly from the beginning to the end of the CPML layer. 0f  is 
the dominant frequency of the source. 
 

Using the complex coordinate variables q~  and r~  to replace q  and r, note that ( ) qSq q ∂∂⋅=∂∂ 1~  and ( ) rSr r ∂∂⋅=∂∂ 1~ . The wave 
equations in the frequency domain with the CPML boundary condition can 
be expressed as follows 
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The expressions (7a) - (7b) are further split into 8 terms and the wave 

equations are converted back to the time domain by taking an inverse 
Fourier transform. The equations are shown in Appendix B. In the time 
domain, these convolution operators from the inverse Fourier transform in 
eqs. (B-3) - (B-10) are hard to calculate. Matar et al. (2005) proposed 
memory variables to replace those difficult convolutions. Memory variables 
are given by (Kuzouglu and Mittra, 1996) 
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where i  and j  represent the number of grid points in the horizontal and 
vertical directions, ji ,ϕ  are memory variables, ia  and ib  are parameters 
used in memory variables. We use memory variables for elastic wave 
equations (B3) - (B10) to eliminate convolutions. Then the equations can be 
rewritten as 
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The first order derivatives qu , ru , qv and rv  in eqs. (9a) - (9d) are 
given by 
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The eqs. (9a) - (10d) are the wave equations applied in curvilinear 
coordinates with a CPML boundary condition. At the free surface, we use 
the irregular free surface boundary condition (4a) - (4b) to solve the wave 
eqs. (9a) - (10d). In the stretched-coordinate metrics, the parameters of the 
CPML in the q  and r  directions are shown in Appendix C (Komatitsch 
and Martin, 2007). 

  
In this study, we use finite-difference methods to approximate elastic 

wave equations. The forward difference is used at the surface and left 
boundaries of the model, whereas backward difference is used at the bottom 
and right boundaries. The central difference is used in the main computing 
domain of the model (Lan and Zhang, 2011). 

 
 

GPU IMPLEMENTATION 
 

The Graphic Processing Unit (GPU) was first designed by NVIDIA® 
to fulfill the growing needs for better computational efficiency in 1999. 
AMD introduced its first GPU Radeon 256 in 2000. Some studies have 
shown that utilizing Compute Unified Device Architecture (CUDA) 
programming language makes it easier to program on NVIDIA® graphics 
cards (Zhang et al., 2009; Holt and Ernst, 2011). In CUDA parallel 
programming, the basic computational unit is a thread processor, and thread 
processors are grouped into multiprocessors. Open CL is comparable with 
CUDA and is an open programming standard capable of programming Intel, 
AMD and NVIDIA® GPUs. Since we only have one GPU donated by 
NVIDIA®, CUDA is used in this research. As GPUs have many thread 
processors, many threads can execute each kernel at the same time. Each 
thread has a unique ID that is used to compute memory addresses and make 
control decisions. 

  
Programming with a GPU, the applications running on hosts and 

their relevant data should be downloaded to the DRAM (Dynamic Random 
Access Memory) of the GPU. There is no doubt that the GPU clusters have 
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better performance than a single GPU. The most time-consuming procedure 
in parallel computing with multiple GPUs is the communication between 
GPU and CPU and between different GPUs. For the communication 
between multiple GPUs, the data is downloaded from one GPU to the host 
via PCIe Switch and then uploaded to another GPU via PCIe switch. The 
bottleneck of the communication is the memory bandwidth. As our 
algorithm is only tested in a relatively small model, there is no need to use a 
GPU cluster. In the future we will extend our algorithm to larger scales and 
also a 3D case and will probably use GPU clusters. 

 
The basic execution of a CUDA program runs as follows. For 

parallel computing, the terminology can be divided into the host, which 
consists of the CPU and its memory, and the device, which consists of the 
GPU and its memory. The parallel computing code splits the source file into 
host related code, which interfaces to the GPU and device components and 
data-parallel portions of an algorithm which are executed on the device as 
kernels, only one of which is executed at a time. Each kernel is executed by 
many threads. CUDA threads are similar to data-parallel tasks in concept. 
Each thread executes independently and performs the same operations on a 
subset of a data structure. One CUDA GPU is made of thousands of parallel 
cores. The first step is to copy input data from CPU memory to GPU DRAM 
memory. After that, load the GPU program and execute, caching data on the 
chip for higher performance. The last step is to copy results from GPU 
memory to CPU memory. 

 
In this study, with free surface boundary condition and the CPML 

absorbing boundary condition, we use CUDA to simulate wavefield 
propagation in elastic media with surface topography on a GPU card 
(NVIDIA® Tesla C2075). The comparison of GPU and CPU parameters are 
shown in Table 1. We use the CPU to set up the device, allocate data arrays, 
read input data, generate compute grids and initialize various parameters 
(e.g., elastic parameters, CPML coefficients and source). Then all of the data 
are transferred from the CPU to the GPU where the seismic wavefields are 
calculated at each model grid. Finally, we transfer all of the results back to 
the CPU and output the files. 

 
Table 1. The device specifications of the CPU and GPU. 
 

 Processing 
Cores 

Clock 
Frequency 
(GHz) 

Memory 
Bandwidth 
(Gb/s) 

Peak Tflops 
(single) 

Total 
Memory 
(Gb) 

CPU: Intel 
Xeon 
X5675 

6 3.06 32 58.25 24 

GPU: Tesla 
C2075 

448 1.15 144 1054.72 6 
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NUMERICAL EXPERIMENT 
 

In order to illustrate the validity of our numerical algorithms with 
both a free surface boundary condition and the CPML absorbing boundary 
condition, seismic wave propagations are simulated in elastic isotropic and 
anisotropic media. As introduced in Martin et al. (2008), we choose 2D 
elastic elongated models to test the CPML absorbing performance. For each 
experiment, the computing codes (conventional CPU version and GPU 
version) run on the same Dell Precision T7500 64 bit Dual Processor 
workstation. 

  
The validity of our algorithm is tested with analytical solutions first 

shown in Aki and Richards (2002). The size of the model is 4.40×1.90 km, 
the source is located at grid point (220, -95) and two receivers are located at 
gird points (25, -165) and (405, -25). The density is 2000 kg/m3, VP = 3000 
m/s and VS = 2000 m/s. Fig. 2 shows horizontal (x) and vertical (z) 
components of the displacement recorded by two receivers. Cross 
correlations of the analytical and numerical results are calculated and shown 
on each figure panel (Figs. 2a to 2d). Those values of cross correlations are 
greater than 0.9870 which proves the correctness of our algorithm. 
 
 

     
 

     
 
Fig. 2. Horizontal (x) and vertical (z) components of the displacement recorded by the 
receivers R1 (25, -165) (a and b) and R2 (405, -25) (c and d) by using an analytical 
solution and our algorithm. Grey solid lines: seismograms of analytical solution; black 
dashed lines: seismograms calculated with our algorithm. Xcorr: cross correlation. 
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Numerical modeling in the 2D isotropic elongated model 
 

For the isotropic medium (c11 = c33), the density is 2000 kg/m3, VP = 
3000 m/s and VS = 2000 m/s, so the elastic parameters are c11 = 18 x109 (Pa), 
c13 = 2 x 109 (Pa), c33 = 18 x109 (Pa) and c44 = 8 x109 (Pa), respectively. The 
topography of this model is denoted by a shape of a wide hill. The size of the 
model is 4.30 ×  1.65 km, and it is discretized using a grid comprised of 430 
×165 grid points with a grid point spacing of 10 m (Fig. 3). The thickness of 
the CPML boundary is 150 m (15 grid points). We focus more on the 
shallow formations to study the effect of the free surface on wave 
propagation. 
 

 
 
Fig. 3. The model with a shape of a hill. The star denotes the source S. The triangles 
denote receivers R1 and R2. The dashed lines represent the CPML boundaries.  
 
 

The Ricker wavelet is used as a function of vertical point source in 
these numerical experiments, which is given by 

f t( ) = 1− 2 π ⋅ f0 t − 0.5( )( )
2( )e− π ⋅ f0 t−0.5( )( )2

  ,              (15) 

where the peak frequency f 0 = 10 Hz. The sampling rate is 1 ms. In order to 
avoid dispersion in seismic numerical modeling, the stability relationship is 
considered by calculating mHzsmfVTV sss  200 10/  2000 ====λ . That 
means there are 20 grid points per minimum wavelength which is more than 
enough to guarantee the stability of the numerical method. 
 

The source is located at grid position (215, 10). Two receivers are 
located at grid positions (25, 140) and (405, 10), which are very close to the 
inner side of the CPML boundary (10 grid points). This makes it easier to 
observe the artificial reflections if CPML does not work well. In the model 
with irregular surface (Fig. 3), the source S, geophones R1 and R2 and CPML 
boundaries are marked as a star, the triangles and dashed lines, respectively.  



 457 

Fig. 4 shows the snapshots of the displacement in the vertical plane 
at 0.8 s, 1.2 s and 4.0 s, respectively. The snapshots (a, b, c) in the left 
column and the snapshots (d, e, f) in the right column are generated by 
numerical wavefield simulations with CPML and PML boundary conditions, 
respectively. One can clearly observe not only seismic P- and S-waves, but 
also Rayleigh waves (R) and Head waves (H). Figs. 3e and 3f show the 
distinct artificial reflections generated by numerical modeling with PML, 
which means CPML works much better than PML to absorb unwanted 
seismic reflections at the edges of the model with surface topography. 

 
 

    

 

    

 

    

 
Fig. 4. Snapshots of the displacement in the vertical plane at 0.8 s, 1.2 s and 4.0 s in an 
isotropic medium. P: Compressional wave; S: Shear wave; R: Rayleigh wave; H: Head 
wave. Wavefield simulation with CPML (a to c); wavefield simulation with PML (d to 
f ). 
 
 

Fig. 5 shows the horizontal (x) and vertical (z) components of the 
displacement recorded by the receivers R1 (a and b) and R2 (c and d). To 
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check the validity of our numerical algorithms, a large model (grids 
comprised of 1230×915) is chosen to represent unbounded media. One can 
find that the seismograms obtained by numerical modeling with CPML 
(dark dotted lines) have great agreement with the seismograms (grey solid 
lines) obtained from the large model. However, severe artificial reflections 
are found in the seismograms obtained by numerical modeling with PML 
(dark dashed lines). 

 

    
 

   
 
Fig. 5. Horizontal (x) and vertical (z) components of the displacement recorded by the 
receivers R1 (a and b) and R2 (c and d) in an isotropic medium. Grey solid lines: 
seismograms calculated in unbounded medium; dark dotted lines: seismograms 
calculated with CPML boundary condition; dark dashed lines: seismograms calculated 
with PML boundary condition. 
 
 

For simplicity, we take the square of wave amplitude as the energy of 
seismic wave propagation. Fig. 6 shows wavefield energy decay curves 
calculated from wavefield simulations with CPML and PML boundary 
conditions in isotropic media. The energy is absorbed gradually after 0.76 s, 
which is the time that the outgoing seismic P-wave first reaches the inner 
side of the absorbing layers. Theoretically, there is no energy remaining in 
the medium after 1.17 s, because P-, S- and Rayleigh waves have left the 
main computational domain. After 1.17 s, one can observe that the energy 
calculated by numerical modeling with CPML reduces faster than that 
calculated by PML, which means CPML has a better absorbing ability than 
PML. 
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Fig. 6. Wavefield energy decay curves calculated with CPML and PML boundary 
conditions in an isotropic medium. 
 
 
Numerical modeling in the anisotropic elongated model 
 

In this model, the density is 3/  3000 mkg  and the elastic parameters 
are ( )Pac  104 9

11 ×= , ( )Pac  108.3 9
13 ×= , ( )Pac  1020 9

33 ×= , and ( )Pac  102 9
44 ×= , 

respectively (Li and Matar, 2010). The positions of the source and receivers 
are exactly the same as those used in the previous study (Fig. 2). The 
dominant source frequency is 5 Hz. 

  
Fig. 7 shows the snapshots of the displacement in the vertical plane 

at 1.2 s, 2.0 s, 2.8 s and 6.0 s, respectively. The snapshots (a, b, c, d) in the 
left column and snapshots (e, f, g, h) in the right column are generated by 
wavefield simulations with CPML and PML boundary conditions, 
respectively. We can clearly observe all the seismic wave phases (quasi-P, 
quasi-S, Rayleigh and Head waves). The distinct artificial reflections can be 
seen in the numerical modeling with PML (Figs. 7e-7h in the right column), 
which means CPML also works better than PML to absorb outgoing seismic 
waves at the edges of the anisotropic model with rough topography. Because 
PML does not work very well to absorb P-waves, some artifacts in the center 
upper part of Figs. 7f and 7g are observed. These are the P-wave reflections 
from bottom boundaries and the irregular free surface. 

 
Fig. 8 shows the horizontal (x) and vertical (z) components of the 

displacement recorded by the receivers R1 (a and b) and R2 (c and d). The 
seismograms obtained by numerical modeling with CPML (dark dotted lines) 
match the seismograms (grey solid lines) obtained from the large model. 
However, severe artificial reflections are found from the seismograms 
generated by numerical modeling with PML (dark dashed lines). Because of 
the close proximity (10 grid points) between receivers and the inner side of 
the boundary, the outgoing quasi-S-waves are seriously distorted by the 
artificial reflections of quasi-P-waves. 
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Fig. 7. Snapshots of the displacement in the vertical plane at 1.2 s, 2.0 s, 2.8 s and 6.0 s 
in an anisotropic medium. P: Compressional wave; S: Shear wave; R: Rayleigh wave; H: 
Head wave. Wavefield simulation with CPML (a to d); wavefield simulation with PML 
(e to h). 
 
  

Fig. 9 shows wavefield energy decay curves calculated from 
wavefield simulations with CPML and PML boundary conditions in an 
anisotropic medium. The CPML and PML start absorbing the energy 
gradually after the outgoing quasi-P wave first reaches the inner edge of the 
absorbing layers (1.82 s). After 2.44 s, theoretically, there is no energy 
remaining in the medium, because all seismic wave phases have left the 
main computational domain. We find that the energy calculated by 
numerical modeling with CPML abruptly decreases after 2.44 s, and the 



 461 

energy absorption of CPML is faster than that of PML, which means CPML 
works better than PML in absorbing outgoing seismic waves. 
 

   

  

 
Fig. 8. Horizontal (x) and vertical (z) components of the displacement recorded by the 
receivers R1 (a and b) and R2 (c and d) in an anisotropic medium. Grey solid lines: 
seismograms calculated in unbounded medium; dark dotted lines: seismograms 
calculated with CPML boundary condition; dark dashed lines: seismograms calculated 
with PML boundary condition. 
  
 

 
Fig. 9. Wavefield energy decay curves calculated with CPML and PML boundary 
conditions in an anisotropic medium. 
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To further test the CPML absorbing performance, we ran seismic 
wavefield simulations up to 10 s. Fig. 10 shows horizontal (x) and vertical 
(z) components of the displacement recorded by the receivers R1 (Figs. 10a 
and 10b) and R2 (Figs. 10c and 10d) by using CPML and PML boundary 
conditions. We found that the numerical modeling with CPML is still stable 
due to the excellent absorbing ability of CPML. However, the seismic 
wavefields calculated with PML are seriously contaminated due to the 
strong artificial reflections. 

 
 

 

 

 

 
 
Fig. 10. Horizontal (x) and vertical (z) components of the displacement in long 
simulation run (10 s) recorded by the receivers R1 (a and b) and R2 (c and d) in an 
anisotropic medium. Grey solid lines: seismograms calculated with CPML boundary 
condition; dark dashed lines: seismograms calculated with PML boundary condition.  
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  In our study, GPU parallel computing on a NVIDIA® GPU card 
(Tesla C2075) has been applied to accelerate the numerical simulation of 
seismic wave propagation in elastic isotropic and anisotropic media with 
rough topography. Our tests demonstrate that GPU parallel code is running 
10 times faster than conventional CPU sequential code on the same 
workstation (Dell Precision T7500 64bit Dual Processor). All of the CPU 
cores are used. The computation acceleration of 10 times is reasonable 
considering our hardware, model parameters and model size. What is more, 
the factor that restricts more acceleration is the communication between 
CPU and GPU memory. 
 

 
Numerical modeling in the non-symmetric free surface model 

 
A non-symmetric model with two hills is built to further test the 

validity of our algorithm.  The density is 3/  2000 mkg , smVP /  3000= and 
smVS /  2000= , so the elastic parameters are ( )Pac  1018 9

11 ×= , ( )Pac  102 9
13 ×= , 

( )Pac  1018 9
33 ×=  and ( )Pac  108 9

44 ×= , respectively. The size of the model is 
4.40 km ×  1.70 km, and it is discretized using a grid comprised of 440×170 
grid points with a grid point spacing of 10 m (Fig. 11). The thickness of the 
CPML boundary is 200 m (20 grid points). The source is located at grid 
position (220, 10). 

 

 
 
Fig. 11. The model with a shape of two hills. The star denotes the source S. The dashed 
lines represent the CPML boundaries.  
 
 

Fig. 12 shows the snapshots of the displacement in the vertical plane 
at 0.8 s, 1.2 s, 1.6 s and 4.0 s, respectively. It shows clearly not only seismic 
P, S, Rayleigh (R) and Head (H) waves, but also Rayleigh wave scatters to 
P-wave (RP) and S-wave (RS). 
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Fig. 12. Snapshots of the displacement in the vertical plane at 0.8 s, 1.2 s, 1.6 s and 4.0 s 
in an isotropic medium. P: Compressional wave; S: Shear wave; R: Rayleigh wave; H: 
Head wave. RP: Rayleigh wave scatters to P-wave; RS: Rayleigh wave scatters to S- 
wave. 

 
Fig. 13 shows the synthetic seismic profiles of the horizontal 

components (a) and vertical components (b) of the displacement. We can 
observe P-wave, R-wave, P-wave diffracts to P-wave (PdP), Rayleigh wave 
reflections to Rayleigh wave (RR), Rayleigh wave diffractions to Rayleigh 
wave (RdR), and Rayleigh wave scatters to P-wave which propagate both 
backward (RPb) and forward (RPf). The RR wave and RS wave are hard to 
separate in the seismic profiles because the velocities of S- and Rayleigh 
waves are very close. In addition, the reflections and scatter waves of the 
right hill have higher energy because the right hill is smaller and steeper than 
the left one. 

 
  

DISCUSSION 
 

Our algorithm basically obeys the rule that there should be at least ten 
grid points per shear wavelength. In addition, the stability condition 

2htcs Δ≤Δ  is used in our algorithm. The numerical test presented in the 
paper is just an example; our algorithm is also suitable for higher 
frequencies. However, dispersion and exponential blow up phenomena were 
observed in seismic numerical modeling in anisotropic media with classic 
PML absorbing boundary condition (Collino and Tsogka, 2001; Bécache et 
al., 2003). Even for CPML, it is also intrinsically unstable. This is because 
PML or CPML both generate spurious modes traveling and growing along 
the absorbing layers when waves impinge the boundary at grazing incidence 
(Komatitsch and Martin, 2007; Martin and Komatitsch, 2009). In free 
surface modeling with Rayleigh waves, the instability of PML and CPML is 
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strongly related to the wave phenomena, especially when the Poisson’s ratio 
of the medium is high (Zeng et al., 2011).  

 

     
 
Fig. 13. Synthetic seismic profiles of the horizontal components (a) and vertical 
components (b) of the displacement. P: direct quasi-compressional wave; R: direct 
Rayleigh wave; RR: Rayleigh wave reflections to Rayleigh wave; RdR: Rayleigh wave 
diffractions to Rayleigh wave; RPb: Rayleigh wave scatters to P-wave and propagates 
backward; RPf: Rayleigh wave scatters to P-wave and propagates forward; PdP: P-wave 
diffracts to P-wave. 
 
 

Although it does not show up in this paper, we have noticed that the 
stability of CPML with an irregular free surface is related to the selection of 
anisotropic parameters. Meza-Fajardo and Papageorgiou (2008) presented 
Multi-axial PML (MPML) in seismic modeling, which leads to better 
numerical stability in anisotropic elastic wave propagation. So, in the future, 
additional stability analysis is needed for anisotropic media with an irregular 
surface topography using a suitable boundary condition. 
 
 
CONCLUSIONS 

 
We incorporated the convolutional perfectly matched layer (CPML) 

boundary condition into wave equations in the curvilinear coordinate 
system. Both a free surface boundary condition and the CPML absorbing 
boundary condition were used in the implementation of the numerical 
algorithm in elastic isotropic and anisotropic media with rough topography 
in curvilinear coordinates. Numerical examples show that our algorithm can 
accurately simulate seismic wave propagation, and CPML is more effective 
in suppressing artificial reflections than perfectly matched layer (PML). 
Additionally, GPU parallel computing on an NVIDIA® GPU card greatly 
accelerates the numerical simulation of seismic wave propagation (10 times 
faster than conventional CPU code). Seismic numerical modeling with a 
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more stable boundary condition (e.g. multi-axial PML) will be 
investigated in a follow-up study. 
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APPENDIX A 
 

The grid points ( )zx,  of the Cartesian coordinates are determined 
from the grid point ( )rq, of the curvilinear coordinates with the equation 

 
( )

).,(
,
rqzz
rqxx

=

=
                        (A-1) 

        
Then, spatial derivatives can be achieved in the Cartesian coordinate system 
from the curvilinear coordinate system following the chain rules (Lan et al., 
2011) 

rxqx rq ∂+∂=∂x , (A-2) 

rzqz rq ∂+∂=∂z .    (A-3) 

where xq , zq , xr  and zr denote ( ) xq zx ∂∂ /, , ( ) zq zx ∂∂ /, , ( ) xr zx ∂∂ /,  and 
( ) zr zx ∂∂ /, , respectively. Similarly, we can express spatial derivatives in the 

curvilinear coordinate system ( )rq,  
 

zqxq zx ∂+∂=∂q ,                   (A-4) 
 

zrxr zx ∂+∂=∂ r . (A-5) 
 

These kinds of derivatives are called metric derivatives (Lan et al., 2011) 

J
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r q
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q
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−
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where rz , qz , rx  and rx  denote ( ) rz rq ∂∂ /, , ( ) qz rq ∂∂ /, , ( ) rx rq ∂∂ /,  and 
( ) rx rq ∂∂ /, , respectively. The Jacobian of the transformation J  is given by 

 

qrrq zxzJ −= x .     (A-8) 
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APPENDIX B 
  

The expressions (7a) - (7b) are further split into eight terms and the 
wave equations are converted back to the time domain by taking an inverse 
Fourier transform leading to the following expressions 
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where 1−F  and ∗  are inverse Fourier transform and convolution operators, 
respectively. 
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APPENDIX C 
  

 In the stretched-coordinate metrics, the parameters of the CPML in 
the q  and r  directions are (Komatitsch and Martin, 2007) 
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where N is a constant and equal to 2; R is the theoretical reflection 
coefficient, here we use 0.0001; L is the thickness of the CPML boundary; dq 
and dr are attenuation factors; q  and r  are the horizontal and vertical 
distance to the CPML boundary;  qa , ra , qb , and rb  are parameters used 
in memory variables. 
 
 
 
 


