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ABSTRACT 
 
Wang, H. and Tsvankin, I., 2018. Methodology of waveform inversion for acoustic 
orthorhombic media. Journal of Seismic Exploration, 27: 201-226. 
 
       Three-dimensional seismic waveform inversion (WI) for anisotropic media is highly 
challenging due to its computational cost and trade-offs between multiple model 
parameters. Here, we develop a methodology of 3D WI for orthorhombic media in the 
acoustic approximation using two mixed-domain modeling algorithms, one of which is 
based on low-rank decomposition and the other on the generalized pseudospectral method. 
Numerical testing shows that both techniques produce kinematically accurate 
compressional wavefields with an acceptable computational cost. To take advantage of 
the superior stability and accuracy of the low-rank-decomposition-based method, it is 
employed to simulate both the forward and adjoint wavefields. The gradient of the data-
difference objective function, however, is more convenient to obtain from the wave 
equations derived with the pseudospectral method. The inversion is conducted with a 
limited-memory version of the quasi-Newton optimization algorithm. Under the 
assumption that the symmetry-plane orientation is known, we invert wide-azimuth data 
for all six parameters of acoustic orthorhombic media. The performance of the developed 
wavefield-extrapolation and gradient-computation algorithms is evaluated for a medium 
with Gaussian anomalies in each parameter. Then we apply the method to a modified 
SEG/EAGE overthrust model to demonstrate the feasibility of waveform inversion and 
illustrate parameter trade-offs for structurally complicated orthorhombic media. 
 
KEY WORDS: waveform inversion, orthorhombic media, seismic anisotropy,  
                           low-rank decomposition, pseudospectral method. 
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INTRODUCTION 
 
        Waveform inversion (WI) has been an active area of research since its 
formal introduction by Lailly (1983) and Tarantola (1984). However, most 
existing waveform-inversion techniques are designed to recover just P-wave 
velocity due to the high computational cost and the intrinsic nonlinearity  of 
the inverse problem. Recently, WI has been extended to both acoustic and 
elastic transversely isotropic models with a vertical symmetry axis (VTI). 
Gholami et al. (2013) present a waveform-inversion case study for Valhall 
field using a 2D acoustic VTI algorithm. Kamath and Tsvankin (2013) apply 
elastic WI to multicomponent reflection data for layer-cake VTI models to 
obtain the interval medium parameters. Elastic WI for laterally 
heterogeneous VTI media is developed by Kamath and Tsvankin (2016), 
who apply their algorithm to transmission data for models with Gaussian 
anomalies in the Thomsen parameters. They also perform sensitivity 
analysis using the radiation patterns for elastic VTI media. 
 
 Transverse isotropy, however, cannot describe many subsurface 
formations that exhibit orthorhombic symmetry due to the influence of 
aligned fractures and nonhydrostatic stresses. Orthorhombic models have 
been successfully used in processing of wide-azimuth reflection and VSP 
data and fracture characterization (Tsvankin, 1997; Tsvankin and Grechka, 
2011; Birdus et al., 2012; Thomas et al., 2012; Wang and Wilkinson, 2012; 
Karazincir and Orumwense, 2014; Mathewson et al., 2015). 
 
 In this paper, we focus on acoustic orthorhombic models described by 
a simplified wave equation that preserves P-wave kinematics (Alkhalifah, 
1998, 2000). Whereas the acoustic approximation is generally adequate for 
diving (refracted) waves, it has well-known limitations in modeling 
reflection amplitudes, especially for long-offset data. Nonetheless, acoustic 
isotropic and VTI models are widely used in WI because they substantially 
reduce computational cost and are described by a smaller number of 
independent parameters. As shown by Tsvankin (1997, 2012), P-wave 
kinematic signatures in elastic orthorhombic media with a fixed orientation 
of the symmetry planes are controlled by six parameters – the P-wave 
vertical velocity VP0 and anisotropy coefficients ε(1), ε(2), δ(1), δ(2), and δ(3) 
(assuming one of the symmetry planes to be horizontal). The same six 
parameters are fully responsible for P-wave propagation in acoustic 
orthorhombic media (Alkhalifah, 2000). Parameterization-related issues for 
tomography and waveform inversion in orthorhombic media are discussed in 
the acoustic approximation by Fowler (2015), Alkhalifah et al. (2016), and 
Masmoudi and Alkhalifah (2016). 
 
  Waveform inversion for complicated models such as orthorhombic has 
to be performed with efficient wavefield simulators. Two categories of 
methods have been proposed to model P-wave propagation in anisotropic 
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media: coupled systems and mixed-domain wavefield extrapolators. The 
coupled systems were originally introduced for TI media (Zhou et al., 
2006a,b; Fletcher et al., 2008, 2009; Fowler et al., 2010; Duveneck and 
Bakker, 2011) and later extended to orthorhombic symmetry (Zhang and 
Zhang, 2011; Fowler and King, 2011). However, those systems produce 
shear-wave “artifacts” (Grechka et al., 2004) caused by setting the shear-wave 
velocity along the symmetry-axis direction to zero. 

 
 The mixed-domain wavefield extrapolators, on the other hand, can 
simulate pure P-wave propagation. In this paper, we implement two efficient 
mixed-domain wavefield extrapolators: those based on low-rank 
decomposition (Song and Alkhalifah, 2013; Fomel et al., 2013b) and 
generalized pseudospectral methods (Fowler and Lapilli, 2012). Low-rank-
decomposition-based wavefield extrapolators are used for both forward and 
adjoint modeling. The inversion gradients, however, are more easily derived 
and computed using the wave equations from generalized pseudospectral 
methods. Hence, combining these two extrapolators for modeling and 
gradient calculation proves to be useful in implementing WI in acoustic 
orthorhombic media. 
 

  Most published algorithms for waveform inversion in orthorhombic 
media estimate a subset of the model parameters (Royle, 2011; Baydin et al., 
2015; Albertin et al., 2016; Oh and Alkhalifah, 2016; Xie et al., 2017). 
Therefore, unless accurate a priori information about the model is available, 
inversion results can be strongly biased. It is preferable to perform 
simultaneous inversion for all pertinent model parameters. In this paper, we 
develop a WI methodology to simultaneously recover all six parameters of 
acoustic orthorhombic media. 
 
 We start by introducing P-wave simulators based on the low-rank 
matrix decomposition and generalized pseudospectral mixed-domain 
operators along with the corresponding numerical adjoint systems. The 
adjoint-state method is employed to derive the gradients of the data-
difference objective function with respect to the six chosen parameters of 
orthorhombic media. Multiparameter waveform inversion is then carried out 
using a nonlinear optimization algorithm. Synthetic examples for 
orthorhombic models with realistic structural complexity illustrate gradient 
computation and waveform inversion of wide-azimuth surface data. 
 
 
MIXED-DOMAIN WAVEFIELD SIMULATOR 

 
 The starting point for deriving pure-mode mixed-domain wavefield 
extrapolators is the dispersion relation of the corresponding wave mode. 
These extrapolators satisfy a general equation of the form (Du et al., 2014):     
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                     (1) 
 
where u(k,t) denotes the scalar wavefield variable in the time-wavenumber 
domain, k is the wave vector, 𝜕!! is the second time-derivative operator, and 
Φ(x,k) is a linear operator defined in the mixed (spatial and wavenumber) 
domain; the source term in eq. (1) is ignored.  In isotropic media, the mixed-
domain operator Φ reduces to 
 
                                                                        (2) 

 
where 𝑣(x) is the velocity. If the model is anisotropic, the mixed-domain 
operator for a selected mode can be obtained from the corresponding 
dispersion relation using the Christoffel equation. 
 

      P-wave velocity in orthorhombic media can be described by six 
Thomsen-style parameters (Tsvankin, 1997, 2012): the P-wave vertical 
velocity VP0 and the anisotropy coefficients ε(1), ε(2), δ(1), δ(2), and δ(3) (the 
Cartesian coordinate planes are assumed to coincide with the planes of sym- 
metry). Expressions for these parameters in terms of the stiffnesses are given 
in the Appendix. An important advantage of Tsvankin’s notation is that it 
reduces the number of independent parameters responsible for P-wave 
kinematics from nine to six. The same six parameters control the wave 
equation in acoustic orthorhombic media (Alkhalifah, 2000). 

 
           Throughout the paper we consider one of the symmetry planes to be 
horizontal, but the wavefield propagators discussed here can handle 
orthorhombic models with arbitrary symmetry-plane orientation. Our 
inversion algorithm operates with the velocities 𝑉Pz,  𝑉Py, 𝑉Px, 𝑉nmo

(!)  , 𝑉nmo
(!) , 

and 𝑉nmo
(!)  defined in the Appendix. The parameters 𝑉Pz = 𝑉P0, 𝑉Px, and  𝑉Py 

are the P-wave velocities in the coordinate directions. The normal-moveout 
(NMO) velocities 𝑉nmo

(!)  and 𝑉nmo
(!)  are those measured in the x2- and x1- 

directions, respectively, above a horizontal orthorhombic layer. The NMO 
velocity 𝑉nmo

(!)  is defined by Fowler and Lapilli (2012) in a similar fashion for 
the horizontal plane. 
 
     The Christoffel matrix in acoustic orthorhombic media can be 
symbolically written as: 

 
                                                                              (3)  
 

where the matrices K and KT contain wavenumbers, and M depends only 
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on the medium parameters. The specific forms of K and M are shown in 
the Appendix [eqs. (A-9) and (A-10)]. 
  
        The P-wave dispersion relation is then obtained by solving the 
characteristic equation of the eigenvalue-eigenvector problem: 

                                (4) 
 
which results in a cubic equation in ω2 given in the Appendix [eq. (A-11)]. 
Note that the P-wave dispersion relation corresponds to the largest root of 
the cubic equation, which can be solved analytically. Then the mixed-
domain operator is obtained as 

                                                        (5) 
 
         The next step is to find a numeric solution of eq. (1) for the generic-
form mixed-domain wavefield extrapolator. Note that for a spatially 
invariant operator Φ(x, k) = Φ(k), eq. (1) reduces to a system of ordinary 
differential equations with the time variable t, which has the formal solution 
             

                                    (6)       
                  
 Eq. (6) has been extensively discussed in the literature (Tal-Ezer, 
1986; Tal-Ezer et al., 1987; Etgen and Dellinger, 1989; Zhang and Zhang, 
2009; Du et al., 2014). Adding the outgoing and incoming solutions of 
eq.(6), one arrives at the time-stepping formula: 
 

           (7) 
 
         Applying the Fourier transform to both sides of eq. (7), we obtain the 
space-domain wavefields:  

       (8)                                          
 
where ℱ[∙]and ℱ!! ∙  denote the forward and inverse Fourier transforms, 
respectively. If the mixed- domain operator Φ(x, k) varies in space, the time-
stepping formula (8) provides only an approximate solution to eq. (1). 
Solving eq. (8) is time-consuming because the number of inverse FFT’s is 
equal to the number of the spatial grid points. We use two techniques 
described below to speed up this computation: low-rank decomposition 
(Fomel et al., 2013b) and the generalized pseudospectral method (Fowler and 
Lapilli, 2012). 

u(k, t±�t) = e±i
p

�(k)�t u(k, t) .

u(k, t+�t) + u(k, t��t) = 2 cos

⇣p
�(k)�t

⌘
u(k, t) .

u(x, t+�t) + u(x, t��t) = F�1
h
2 cos

⇣p
��t

⌘
F [u(x, t)]

i
,
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Wavefield simulator based on low-rank decomposition 
 
 The low-rank-decomposition-based extrapolation algorithm used here 
follows the work by Fomel et al. (2013b). According to their approach, the 
first step is to discretize the cosine term of  eq. (8) into a matrix: 
  

          
                (9)         
 
        This matrix, called a “propagator”, is iteratively applied to the wavefield 
during wave extrapolation. If the time step ∆t is sufficiently small, eq. (9) 
has a low-rank feature, which means that the discretized matrix and its 
Hermitian have a large null space. This sparsity makes it possible to 
represent the matrix using a relatively small number of column and row 
vectors. Although singular value decomposition (SVD) is a common choice 
to select those vectors, it is impractical computationally because the 
dimension of the matrix in eq. (9) for 3D problems is extremely large 
(typically the number of rows and columns is on the order of 109). 
 
         A cheaper way to obtain those vectors is based on a randomized 
algorithm, which performs sparse matrix decomposition by selecting certain 
columns and rows of the original matrix. Symbolically, this decomposition 
takes the form of  
 

                                                      (10) 
 
where W is the M × N  propagator matrix,  U is the M × m matrix of 
selected columns,  V is the n × N matrix of selected rows, Λ is a m × n 
full matrix of a relatively small size, where m and n are called the 
approximate numeric row and column ranks of the matrix W (m ≪ M 
and n ≪ N ). The obvious differences between this decomposition and 
SVD are that the columns of U are a subset of the columns of  W rather 
than the eigenvectors of  WW†, the rows of  V are a subset of the rows of  
W rather than the eigenvectors of  W†

 W, and Λ is a small full matrix 
rather than a diagonal matrix consisting of the eigenvalues obtained by 
SVD. 
 

 In a typical implementation, one multiplies the matrices U and Λ: 
 

                                                                                                 (11) 
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which yields the following low-rank decomposition: 
 

                                                                       (12) 
 
where R coincides with V [eq. (10)]. Using eq. (12), one can iteratively 
propagate the wavefield along the time axis: 
 

                 (13) 
 

where R and L are applied in the wavenumber and spatial domains, 
respectively. 

 
 

Generalized pseudospectral wavefield simulator 
 
        Low-rank decomposition methods can accurately simulate wave 
propagation because they do not involve any approximations of the 
corresponding dispersion relations. However, the matrix decomposition is 
purely numeric and the decomposed matrices cannot be expressed explicitly 
in terms of the medium parameters. This causes a problem for adjoint-state 
techniques, where the wave equation needs to be differentiated with respect 
to the medium parameters. 
 
        The pseudospectral method (Kosloff and Baysal, 1982) provides an 
efficient way to simulate wavefields while maintaining an explicit form of 
the wave equation. Its extension to orthorhombic media was presented by 
Fowler and Lapilli (2012), who proposed the generalized pseudospectral 
method. That method approximates the wavefield derivatives using global 
basis functions, rather than local finite-differences. First, the cosine term in 
eq. (8) is expanded in a two-term Taylor series 
 

                                                      (14) 
 
The time-stepping formula (8) then becomes: 

 

        (15) 

 Because the mixed-domain operator Φ(x, k) involves a certain form of 
spatial derivatives, eq. (15) implements the generalized pseudospectral 
method with Fourier basis functions. However, application of eq. (15) is still 

cos

⇣p
��t
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hampered by the fact that the operator Φ(x, k) varies spatially and appears 
inside the inverse Fourier transform. To use Fast Fourier transforms, the 
mixed-domain operator must be represented in separable form: 

 

                                                                     (16) 

where  N is the number of separable terms, and 𝑓!(x) and  𝑔!(k) are the pure 
spatial-  and wavenumber-domain operators, respectively. 
 
 For an acoustic orthorhombic medium with the symmetry planes that 
coincide with the Cartesian coordinate planes, the separable mixed-domain 
operator takes the form [eq. (13) in Fowler and Lapilli (2012)]: 
 

                
              (17) 

where 𝑉r is a certain reference velocity, and the other velocities are defined 
in the Appendix. 
 
 Once the mixed-domain operator is separated into the pure spatial- 
and wavenumber-domain operators [eq. (17)], the corresponding time-
stepping formula can be expressed as (Fowler   and Lapilli, 2012): 
 

   
                                                                                                                    (18) 
 

Comparison of two extrapolators 
 
          Although both low-rank-decomposition-based and generalized pseudo-
spectral methods can synthesize kinematically correct P-wavefields, the 
simulated amplitudes differ from those in elastic media. Such amplitude 
distortions are inevitable in the acoustic approximation. However, generalized 
pseudospectral methods introduce additional approximations to the P-wave 
dispersion relation to achieve a separable form of the mixed-domain 
operators. This approximation may cause problems during the inversion 
because model updates do not necessarily satisfy the assumptions of the 
method. In such cases, the wavefield simulation becomes either unstable or 
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inaccurate. Therefore, we employ low-rank decomposition to model both the 
forward and adjoint wavefields. 
 
         In terms of efficiency, the low-rank decomposition and generalized 
pseudospectral methods are similar. For each time step, time complexity of 
both algorithms is linear-logarithmic in the number of the spatial grid points 
because both techniques are FFT-based. Prior to the wave extrapolation 
stage, low-rank decomposition has additional linear time-complexity in the 
number of spatial grid points (Fomel et al., 2013b), but it can be ignored 
compared to the time-stepping part of the algorithm. Pestana and Stoffa 
(2010) and Fomel et al. (2013b) show that low-rank decomposition-based 
extrapolators are typically less expensive than their pseudospectral 
counterparts because they require fewer applications of FFT in the time 
stepping. 
 
 

Absorbing boundary condition 
 
 An important component of the numerical simulation is boundary 
conditions. For low-rank-based and generalized pseudospectral simulators, 
the absorbing boundary condition can be implemented by adding an 
exponentially decaying term to the wavefield after applying the propagators: 
 

                                   (19) 
 
where α(x) is the damping profile with nonzero values at the boundary. 
Adding the outgoing and incoming solutions yields the two-step time 
extrapolation formula in the spatial domain: 
 

                                                                                                                    (20) 
 
        Employing the approach discussed in the previous two sections, one 
can arrive at the following two-step formula for low-rank decomposition 
extrapolators: 
 

       (21) 
 
For generalized pseudospectral extrapolators, the corresponding equation is: 
 
 

u(k, t±�t) = e⌥↵(x)e±i
p

�(k)�t u(k, t) ,
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    (22) 
 
 
Adjoint wavefield propagation 
 
         Seismic waveform inversion is often performed using adjoint methods 
because the cost of computing the Fréchet derivatives of the objective 
function is prohibitively high (Fichtner, 2010).  Such methods operate with 
so-called adjoint wavefield variables, which satisfy the adjoint wave 
equations. If the wave equations used in the forward simulations are self-
adjoint, the corresponding equations retain the same form. On the other 
hand, if the wave equations for forward simulation are not self-adjoint, such 
as the ones we use in this paper (based on low-rank decomposition and 
generalized pseudospectral methods), the adjoint wave equations have a 
different form and need to be solved separately. 
 

    Because the forward wavefield simulators are basically successive 
matrix-vector multiplications applied to wavefield vectors, the numerical 
adjoint wavefield simulators represent the transposed matrices successively 
operating with those wavefield vectors. The mixed-domain adjoint wave 
equations can be written in the following generic form similar to eq. (1): 

 
                                                              (23) 
 
where Φ̃(x, k) is the numeric adjoint mixed-domain operator.  In the case of 
the low-rank decomposition simulator, the adjoint mixed-domain operator is: 
 
                                                        (24) 
 
where “ T ” indicates the matrix transpose, and L and R are defined in eqs. 
(11) and (12). The corresponding time-stepping formula then becomes: 
 

                    (25)                      
 
which is different from the forward time-stepping eq. (13). 
 
 

u(x, t+�t) + e�2↵(x) u(x, t��t)
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WAVEFORM INVERSION 
 
        In addition to seismic wavefield simulators, waveform inversion 
requires well-designed objective functions and efficient large-scale nonlinear 
optimization algorithms, which are discussed below. 
 
 
Objective function 
 
        Waveform inversion is performed by minimizing a certain objective 
function, most often the l2-norm data difference. Due to the high 
nonlinearity of the problem, minimization is often carried out by gradually 
increasing the frequency bandwidth starting with low frequencies. Such 
cascaded inversions typically assume the existence of ultra low-frequency 
data, which are often missing in seismic acquisition. The reliance on low 
frequencies can be mitigated, for example, by employing envelope-based 
objective functions (Wu et al., 2014; Luo and Wu, 2015). 
 
        Here, we consider only the classical l2-norm data difference, which is 
defined as 
 

                                                                (26) 
 
where the subscript i denotes the data coordinate, Γx is an index set for the 
data coordinates, and  𝐝!!"# and 𝐝!!"# are the calculated and observed 
discrete-time data (respectively) for a given source-receiver pair that 
belongs to the 𝑁! - dimensional vector space  ℝ!! , where 𝑁! is the number 
of time steps in numerical simulations. The data are obtained by applying 
a binning operator W to the wavefield: 
 
 

                                                                                  (27) 
 
 For the ℓ!-norm data difference in eq. (26), the adjoint source 
function used for modeling the adjoint variables is 
 
 
                                                                                      (28) 
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Waveform-inversion gradients 
 
          To compute the gradients of the objective function using the adjoint-
state method (Tarantola, 1988; Tromp et al., 2005; Plessix, 2006; Fichtner et 
al., 2006a,b; Liu and Tromp, 2008; Chen, 2011), one can augment the 
objective function: 
 
                                          (29) 
 
where the symbol <·,·> denotes the inner product in the L2-space (to which 
the state and adjoint variables belong), and F is the discretized state 
equation: 
 
                                         (30) 
 
where  𝑓!  is the source term. The adjoint variable λ satisfies the 
discretized adjoint equation: 
 
 
                                      (31) 

where  𝑓! is the adjoint source term. The gradients of the original objective 
function are then derived by setting the derivatives of the function 𝜒 [eq. 
(29)] with respect to the medium parameters to zero: 
 
 

                                                              (32) 

          The low-rank decomposition simulator for acoustic orthorhombic 
media does not yield a closed-form wave equation. Therefore, we elect to use 
the wave equation produced with the generalized pseudospectral method to 
compute the term ∂F/∂m in eq. (32), which is required to obtain  the 
gradients. Deriving the separable mixed-domain operator [eq. (17)] from 
the generalized pseudospectral method, and substituting the parameters 𝑉Px!  , 
𝑉Py!  ,  𝑉Pz!  , 𝑉nmo1!  , 𝑉nmo2!  , and 𝑉nmo3!  for 𝑚 yields 
 

                (33) 
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                       (34) 

          
              (35)          
                      

                  (36) 

             (37)  

            (38) 

where 𝑢 and 𝜆 are the wavefield variables found from the state eq. (30) and 
the adjoint eq. (31), respectively.  
 
 
 
SYNTHETIC EXAMPLES 
 
Gradient computation 
 
 First, we test the computation of the inversion gradient on a relatively 
simple orthorhombic model with a Gaussian anomaly in each parameter 
(Fig.1). As illustrated in Fig. 2a, the anomalies for different parameter fields 
do not overlap. The wavefield is excited by an areal source array located at 
the surface (Fig. 2b). To remove the influence of illumination on the 
inversion results, we put receivers at each grid point on all six faces of the 
model cube. 
 

   Because the gradients govern the spatial positions and relative 
magnitudes of model updates, they help evaluate the performance of the 
chosen parameterization. Ideally, the gradient for each parameter should be 
nonzero only in the area of its Gaussian anomaly, which would imply the 
absence of trade-offs. 
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Fig. 1. 3D models of the six parameters of an acoustic orthorhombic medium. Gaussian 
anomalies are embedded in a background medium with linearly increasing velocities. 
 
 

   
     (a)      (b) 
 
Fig. 2. (a) Six Gaussian anomalies from Fig. 1 plotted together. (b) The projections of the 
anomalies from Fig. 2a and the array of sources (red dots) at the surface. 

 
 
   Because the gradients govern the spatial positions and relative 
magnitudes of model updates, they help evaluate the performance of the 
chosen parameterization. Ideally, the gradient for each parameter should be 
nonzero only in the area of its Gaussian anomaly, which would imply the 
absence of trade-offs. 

 
 The gradients generally concentrate near the Gaussian anomalies but 
they are somewhat smeared in space, especially those for the parameters 
Vnmo1,   Vnmo2,   and   Vnmo3   (Fig. 3).   Therefore,  it is difficult  to identify the 
precise locations of the anomalies for the three  NMO  velocities,  which is an 
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Fig. 3. WI gradients for the model from Fig. 1 computed with the ℓ!-norm data 
difference. The gradients correspond to the background model with the linearly increasing 
velocities (Fig. 1). Notice that we just mark the positive and negative signs in the color 
bar. WI gradients represent only the descent directions during the iterative inversion 
process and their actual magnitudes are determined by the step length computed from 
line-searching algorithms. 
 
 
 

 
 
Fig. 4. Orthorhombic medium obtained from the SEG/EAGE overthrust model. The 
velocities are scaled from the original P-wave isotropic velocity field. The planes of 
symmetry coincide with the coordinate planes. 
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indication of coupling or trade-offs between the medium parameters. In 
contrast, the gradients for the coordinate-direction velocities VPz, VPx, and 
VPy show better-defined Gaussian-shape patterns near the anomalies, which 
indicates that they are more tightly constrained than the NMO velocities. 
 
 
Inversion for the modified SEG/EAGE overthrust model 
 
 Next, we apply WI to synthetic data using an iterative gradient-based 
algorithm. Model updating is performed using a limited-memory variable 
metric method with box bounds (Benson and Moré, 2001; Thiébaut, 2002), 
which represents a version of the BFGS method (Liu and Nocedal, 1989; 
Nocedal, 1992; Kolda et al., 1998; Nocedal and Wright, 2009). 
 
 For this test, we use a modified portion of the SEG/EAGE overthrust 
model (Aminzadeh et al., 1997) overlaid by a water layer (Fig. 5). For 
simplicity, the symmetry-plane orientation is fixed throughout the model 
(one of the symmetry planes is horizontal), but the algorithm can potentially 
handle tilted orthorhombic media as well. To avoid the “inverse crime” of 
using the same wavefield simulators for modeling and inversion, the 
observed data (25 shot gathers) are produced with the generalized 
pseudospectral method, whereas low-rank decomposition is used for 
computing the forward and adjoint wavefields during model updating. 
 
 

 
 
Fig. 5. Portion of the orthorhombic model from Fig. 4 with a water layer on top. 
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The shots are evenly spaced at the surface with a checkerboard pattern; the 
receivers are also located at the surface. We assume that the source function, 
which has an effective spectral band from 5 Hz to 55 Hz with a peak 
frequency around 20 Hz, is known. 
 
         The initial models for WI are obtained by strong smoothing of the 
actual velocity fields (Fig. 6). The WI is performed using the multiscale 
approach with five frequency bands:  0 − 8 Hz,  0 − 16 Hz,  0 − 32 Hz,  and 
0 − 64 Hz. We put masks around source positions to avoid large spurious 
updates in those areas, which is a typical practice in WI. The iterations for 
each frequency band are terminated when the objective function flattens 
out; the total number of iterations reached 102 with over 600 gradient 
evaluations. The inverted models (Fig. 7) show significant improvement 
over the initial ones, with important geologic structures such as faults, 
synclines, anticlines and low-velocity zones being better resolved. 

 
         For this particular acquisition geometry, the velocities VPz, VPy, and 
VPy are better constrained than the NMO velocities, which confirms the 
results of the gradient computation for the model with the Gaussian 
anomalies (Fig. 3). Due to the periodic nature of the FFT, spurious near-
field artifacts are still present around source locations. These artifacts are 
more noticeable in the inverted NMO velocities, especially around the 
location (z = 0.2 km, x = 0.4 km, y = 0.5 km) in the Vnmo2-field. 
 
 
 

 
 
Fig. 6. Initial parameter fields used to perform WI for the model in Fig. 5. 
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Fig. 7. Final inverted parameter fields. 
 
  
 
          To examine the inversion results in more detail, we plot the vertical 
profiles of the velocity VPz from the actual, initial, and inverted models 
(Fig.8a). Although not completely recovered, the inverted velocities are 
much closer to the actual values compared to the initial models. 
 
          Overall, this synthetic example demonstrates the potential of high-
resolution parameter estimation for orthorhombic media using WI. The data 
fit is not perfect because of parameter trade-offs that produce a complicated, 
multimodal objective function. Nevertheless, the WI algorithm significantly 
reduces the data misfit and improves the accuracy of all model parameters. A 
more in-depth exploration of inversion strategies and parameter trade-offs is 
the subject of ongoing research. 
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        (a) 
 
 

 
 
                                                                           (b) 
 
Fig. 8. (a) Vertical profiles of the actual (black), initial (red), and inverted (blue) velocity 
𝑉Pz (in km/s). (b) The locations of the velocity profiles. The profiles on plot (a) are 
arranged from left to right according to their locations [plot (b)] in the ascending order 
first in x and then in y. 
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CONCLUSIONS 

 
 We developed algorithms for 3D P-wave modeling and waveform 
inversion in acoustic orthorhombic media, and employed them to study the 
feasibility of parameter estimation from wide-azimuth surface data. 
Wavefield simulations are carried out with a mixed-domain extrapolator 
using low-rank decomposition. The gradient computation, however, is based 
on the wave equation obtained by the generalized pseudospectral method. 
The choice of wavefield extrapolator is explained by the superior accuracy 
and stability of the method based on low-rank decomposition. 
 
 The limited-memory variable metric method, used for model 
updating, performs reasonably well in terms of the convergence rate and 
computational cost. Our algorithm carries out multiparameter inversion with 
the model described by the P-wave velocities VPz, VPx, and VPy in the 
coordinate directions and the NMO velocities Vnmo1, Vnmo2, and Vnmo3. 
 
 A synthetic example for a complicated geologic structure shows that 
WI can reconstruct high-resolution fields of the velocities VPz, VPx, and VPy 
from wide-azimuth surface P-wave data. However, synthetic examples also 
reveal significant trade-offs among the model parameters, which reduce the 
accuracy of the inverted NMO velocities Vnmo1, Vnmo2, and Vnmo3. Although 
the low-wavelength fields of the NMO velocities are constrained by 
reflection traveltimes, their higher-frequency components are not well 
resolved by WI. Overall, this work demonstrates the feasibility of waveform 
inversion of wide-azimuth surface data for acoustic orthorhombic media. 
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APPENDIX 
 

P-WAVE DISPERSION RELATION IN ACOUSTIC ORTHORHOMBIC 
MEDIA 
 
 As discussed by (Tsvankin, 1997, 2012), P-wave kinematic signatures 
in orthorhombic media are fully controlled by the vertical velocity 𝑉!! and 
five anisotropy parameters (the coordinate planes are assumed to coincide 
with the planes of symmetry): 
 

               (A-1) 
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                (A-2) 

 (A-3)

            (A-4)

            (A-5)

            (A-6) 

The superscripts refer to the axis orthogonal to the corresponding plane. 
Then the Christoffel matrix [eq. (3)] can be written as 
 
     

 
             (A-7) 

Symbolically we represent eq. (A-7) as 
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             (A-9) 
 
and 
 
 

  
 
                 (A-10) 
 

Substituting the matrix G into the characteristic eq. (4) yields a cubic 
equation for 𝜔!: 
 

                     (A-11) 
where 
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Our waveform-inversion algorithm operates with the P-wave velocities 
𝑉Px, 𝑉Py, and 𝑉Pz in the coordinate directions, and the NMO velocities 𝑉nmo

(!) ,  
𝑉nmo
(!) , and 𝑉nmo

(!)  : 
 
                         (A-15) 
 

                        (A-16) 
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                       (A-20) 

 

The coefficients 𝑎!, 𝑎!, and 𝑎! in eqs. (A-12) - (A-14) then take the form: 
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           (A-23) 

The P-wave dispersion relation is obtained analytically by solving the cubic 
eq. (A-11). 

 


