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SEISMIC DECONVOLUTION USING ITERATIVE
TRANSFORM-DOMAIN SPARSE INVERSION
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ABSTRACT

Bai, M. and Wu, J., 2018. Seismic deconvolution using iterative transform-domain sparse
inversion. Journal of Seismic Exploration, 27: 103-116.

Post-stack seismic deconvolution is a classic inverse problem in seismic exploration,
which can tremendously improve the resolution of seismic reflectors. Because of the
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h problem by applying ditterent constraints. We propose Fo"?fp]:il'y A transtormdomain
rsity constraint to the inverse deconvolution problem and propose to solve it by a
ple iterative thresh- olding algorithm. Compared with the alternative Wiener filtering,
proposed iterative transform-domain thresholding algorithm can improve the
1al-to-noise ratio (SNR) and the spatial coherency of the seismic data after
onvolution., Both synthetic and field data example are used to demonstrate the

erior performance of the proposed algorithm.
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TRODUCTION

The successful characterization of subsurface hydrocarbon reservoirs
m seismic data highly depends on a clean and high-resolution seismic
1ge. A lot of methods have been developed to improve the quality of
smic images. One widely used approach to improve seismic image is to
)ly some random noise attenuation approaches to remove the noise (either
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generated from the migration artifacts or from the ambient noise on the raw
pre-stack seismic data) (Liu et al., 2016e,b,c; Kong et al., 2016; Wu et al.,
2016; Siahsar et al.,, 2017a,c). The prediction based denoising approach
(Canales, 1984; Liu et al., 2012), statistics-based denoising approach (Gan et
al., 2016¢; Chen et al.,, 2017b), eigen-image based denoising approach
(Huang et al., 2016; Xue et al., 2016; Huang et al., 2017a,b; Chen et al.,
2017c; Zhang et al., 2017), morphological operation based methods (Li et al.,
2016a,b; Huang et al., 2017c¢), inversion based methods (Zu et al., 2017a),
dictionary learn- ing based methods (Siahsar et al., 2017b; Chen, 2017), and
transform-domain thresholding based denoising approaches (Fomel and Liu,
2010; Gan et al., 2016a; Zu et al., 2016a; Sun and Wang, 2016; Gan et al.,
2016b; Zhang et al., 2016; Xue et al., 2017) are the four main denoising
approaches existing in the seismic data processing community (Liu et al.,
2012; Chen and Fomel, 2015; Chen, 2015; Yang et al., 2015). All the
published methods have their own pros and cons regarding the denoising
assumptions. However, none of the existing de- noising methods consider
increasing the resolution together with denoising simultaneously.

Increasing the resolution of seismic data is usually a separate processing
step by deconvolution (Liu et al., 2016a). In this paper, we propose a novel
framework in which the noise attenuation problem and the resolution
enhancing problem are solved simultaneously. We first review the
convolution model widely used in the traditional seismic deconvolution
literature and then compare the traditional Wiener filtering method and
sparsity promoting method in the context of optimization. Then, we further
introduce the proposed mathematical model and point the key difference
between the proposed method and traditional alternatives. The new
optimization problem is solved using an iterative framework with a simple
FK thresholding as a constraining operator. The principal advantage of the
pro- posed method is that it takes advantage of the spatial coherency of
post-stack seismic data and is able to increase the resolution while rejecting
the random noise simultaneously. The proposed algorithm framework is
based on the well-known convolution model and can be applied in any 2D or
3D post-stack seismic data. The sparse constraint is not limited to the FK
thresholding operator. The application of other sparsity-promoting
transforms is straightforward and the comparison of the performance of
different methods is worth being investigated. Both synthetic and field data
examples show very successful performance of the proposed approach.

THEORY

Let us start the theory from the basic convolution model, which assumes
the observed trace d is the result of the convolution of the wavelet w with the
reflectivity series » plus some superposed noise 7:
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d(t) = w(t) * r(t) +n(t) | (1)
where * denotes convolution.

We can write eq. (1) in the matrix-vector form:
d=Wr+n |, ()

For the multi-channel case, d, r, and n are all vectorized matrices. W is a
block diagonal matrix.

Seismic deconvolution aims to solve eq. (2) for r. Because W is highly
singular and n is unknown, eq. (2) is highly under-determined. In order to
solve the problem, we need to add some constraints. With different
constraints, problem (2) can be transferred into different alternative
minimization problems:

1. With a least-energy constraint on the reflectivity:

. 1 2 2
min 5 |d—Wr |5 +e| |3 , (3)

2. With a sparsity constraint on the reflectivity.

. |
min 7 |d—Wr|3+e| | ' (4)

Here, I - Il,, II - Il, denote L, and L, norms, respectively. € is a

controlling factor. Eq. (3) also refers to the Wiener deconvolution, while eq.
(4) refers to the sparse deconvolution. The solution of eq. (3) can be
obtained by

frs=(WIW+e)'WHd (5)

where 'r, ¢ is the solution using the least-squares criterion (5), [']H denotes

adjoint. Eq. (4) can be solved using a iterative thresholding algorithm (Chen
et al., 2015; Gan et al., 2015; Liu et al., 2016d; Zu et al., 2016b; Zhou,
2017):

Tnt1 = Ta(ru 2 )\WH (d - Wr?'t)) s (6)
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where T is a thresholding operator with a input parameter a. A is the update
step size. The thresholding operator T can be chosen as a soft thresholding
operator:

s | (Jz| = @) x sign(z) for |z|>a
Talz) = { 0 for |z| <a

; (7
or as a hard thresholding operator:
T (z) = xz for |z|>a
a0 for |z|<a (8)

In this paper, we propose a different sparsity constraint. Instead of
enforcing the sparsity constraint directly on the reflectivity, we propose to
enforce the sparsity constraint on the transform-domain coefficients of the
reflectivity.

1
min 3 || d - Wi |3+ || Ar | ”

Here, A denotes a sparsity-promoting transform. Note that Ar denotes both
the product of A and r and the transform of r. Here, we assume A is a linear
transform, and the transform of r is equal to the product of matrix A and
vector r. In order to solve eq. (9), we can use a similar iterative algorithm as
(6):

rni1 = AT ToA(r, + AWH(d — Wr,)) | (10)

where A™' is the inverse sparsity-promoting transform. In this paper, we
choose the simple Fourier transform as the sparsity-promoting transform.

EXAMPLES

In order to numerically evaluate the performance of inverted reflectivity
model, we define the following signal-to-noise ratio (SNR) (Chen and Ma,
2014; Zu et al., 2016b; Chen, 2016)

I3

SNR, =10log;, e ]
nll2

’ (11)
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where r is the true reflectivity. r, is the inverted model after the n-th
iteration.

The first example is shown in Figs. 1-7. Fig. la shows the exact
reflectivity model, which is a band-limited reflectivity model, and Fig. 1b
shows the observed post-stack data. Fig. 2a shows the result using the
proposed iterative sparse inversion method after 100 iterations. Fig. 2b
shows the result from the traditional Wiener filtering. The resolution of the
reflectivity image in Fig. 2a is higher than the resolution of Fig. 2b, but the
comparison is not very obvious. To compare in a more salient way, we plot
the error sections in Fig. 3. The error sections here mean the difference
sections between the exact solution and the inverted model. It is quite clear
that the error using the sparse inversion method is almost negligible while
the error using the Wiener filtering method is very large, which proves the
correctness of the proposed iterative algorithm in solving the inverse
problem. To make the comparison even clearer, we show some results in the
greyscale plots (Fig. 4). Fig. 5 shows the comparison of the reflectivity
images using the proposed and the traditional Wiener filtering methods. In
the greyscale plot, the comparison is very clear that the proposed method
obtains a high-resolution result while the Wiener filtering method causes
some side-lobes of the waveforms which degrade the resolution a lot. The
side-lobes are caused due to the large stability factor used in the traditional
Wiener filtering method. Fig. 5 shows the error sections of two methods in
greyscale plots. The comparison further shows that the proposed method can
obtain very accurate inversion result. In this paper, we use a percentile
strategy to choose the optimal threshold value (Chen et al., 2014). More
specifically, we preserve a percentage of the largest coefficients (2%) in the
transform domain. The step size will affect the convergence rate and
stability. If we choose a very large step size, the iterations are dangerous,
which means they may not converge. In this paper, we choose 0.5 to obtain
the presented results. In the Wiener filtering method, we use 1% of the
largest value of spectrum coefficients as the stability factor.

To show how the result evolve during the iterations, we plot three
models (after 5, 20, and 80 iterations, respectively) during inversion, and
their corresponding predicted data, in Fig. 6. The results during iterations
show that the model gets closer and closer to the exact solution shown in Fig.
la and the data misfit is becoming smaller and smaller during the inversion.
Fig. 7 shows the SNRs of the inverted model during the 100 iterations. The
SNR goes from 2.173 dB in the beginning to 33.5 dB in the final result. As a
comparison, we also calculate the SNR of the Wiener filtering method,
which is 16.78 dB. The SNR comparison provides a quantitative measure of
the relative performance between Wiener filtering and the proposed method
in this example.
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Fig. 1. (a) Reflectivity. (b) Observed data.
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Fig. 2. (a) Inverted reflectivity using sparse inversion. (b) Inverted reflectivity using
Wiener filtering.
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Fiﬁ' 3. Error section. (a) Inverted reflectivity using sparse inversion. (b) Inverted
reflectivity using Wiener filtering.
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Fig. 4. Greyscale comparison. (a) Error section using sparse inversion. (b) Error section
using Wiener filtering.
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Fig. 5. Greyscale comparison. (a) Inverted reflectivity using sparse inversion. (b) Inverted
reflectivity using Wiener filtering.

We then apply the proposed method to a real post-stack seismic data. Fig.
8a shows the very noisy and low-resolution field data from a land survey in
China. Fig. 8b shows the final deconvolved result using the sparse inversion
method and Fig. 8¢ shows the result using the Wiener filtering method. In
this example, we use 200 iterations to obtain the result. In the transform
domain, we preserve 5% of the largest coefficients. We use the same
stability factor selection method as the synthetic example. It is very clear
that the proposed sparse inversion method obtains a much improved image
by enhancing the resolution and increasing the SNR of the data. Here, SNR
is roughly evaluated by human visualization. The Wiener filtering method,
although gets some improvement, has lower resolution and more residual
noise than the proposed method.

In the presented examples, it has been shown that if the reflectivity
models satisfy the “sparsity” assumption in some transform domains, the
sparse inversion based method can obtain a significantly cleaner result than
that from the traditional Wiener filtering method. However, if the “sparsity”
assumption is not satisfied, e.g., when the earth reflectivity is dense, the
Wiener filtering method can still outperform the sparse inversion method,
with the compromise of introducing some unwanted noise. Our initial guess
of which method to use in practice is that if the seismic data shows obvious
spatial coherency, which means the transform domain can be sparse, we
should use the sparse inversion method. While the seismic data contains
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obvious spatial discontinuities, we suggest using the Wiener filtering method
as the common routine. However, our guess requires future validation
through more comprehensive numerical and field tests. In many seismic
exploration settings, lateral resolution can be very important (Chen et al.,
2017a). Regarding the lateral resolution, because the sparsity based method
takes advantage of spatial coherence for regularizing the reflectivity model,
the spatial resolution may be decreased to some extent, which also results in
a slightly higher uncertainty about the lateral resolution. The traditional
Wiener filtering method, however, due to its trace-by-trace processing nature,
the spatial resolution can be preserved well. The proposed method and
traditional Wiener filtering method should not vary much regarding the
vertical resolution (Chen and Jin, 2015; Zu et al., 2017b).

E!!i?‘:ﬁ- i

ol |!= "!m " ‘“:“ ’ii “ ”

: lnu ol

ha |||||i+ i ”“[ |”

;rurv !ﬂl”"

||1I|ﬂ|l”|“|1i|l || || ! L iliﬂ

o~
100 0 50 100 0 50 100
Trace Trace Trace
(a) (b) (c)

Fig. 6. Inversion results and the forward modeled results during the iteration (each
column correspond to r, and Wr, in eq. (10) for a specific n). (a) 5 iteration
(SNR=0.57dB). (b) 20 iteration (SNR = 2.69 dB). (c) 80 iteration (SNR = 25.63 dB). (d)
Forward modeled result using (a). (e¢) Forward modeled result using (b). (f) Forward
modeled result using (c).
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Fig. 7. Convergence diagram of the signal-to-noise ratio.

CONCLUSIONS

Improving the resolution while decreasing the ambient random noise in
post-stack images is a vital step in seismic data processing. The traditional
Wiener filtering method that is based on least-squares inversion is capable of
improving the data quality to some extent but will still cause very strong
noise due to the stabilization. We propose a very effective sparse inversion
method for deconvolving the post-stack seismic data using a thresholding
operator in a sparse transform domain as a constraint. Results show that the
proposed method can obtain very high-resolution reflectivity image and can
remove the spatially incoherent random noise thanks to the
sparsity-promoting thresholding operator. Both synthetic and field data
examples confirm the validity and effectiveness of the proposed algorithm
framework.
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Fig. 8. Field data example. (a) Post-stack field data. (b) Inverted reflectivity using the
proposed sparse inversion method. (b) Inverted reflectivity using Wiener filtering
method.
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