JOURNAL OF SEISMIC EXPLORATION 27, 89-101 89

SPECTRAL DECOMPOSITION WITH SPARSITY
CONSTRAINT AND ITS APPLICATION

HAN XU', XINWEN WANG'and LI GAO?

! School of Earth Sciences and Recourses, China University of Geosciences, Beijing
100083, P.R. China. xuhan_cug2016@126.com, wxw(@cugb.edu.cn

’Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081,
P.R. China. gl1989@126.com

(Received December 2, 2016; revised version accepted November 10, 2017)

ABSTRACT

Xu, H., Wang, X. And Gao, L., 2018. Spectral decomposition with sparsity constraint
and its application. Journal of Seismic Exploration, 27: 89-101.

Spectral decomposition has been widely used in seismic signal processing and
interpretation at present because it can reveals lots of valuable information hidden in the
broadband seismic response. Unlike the conventional frequency-based methods, spectral
decomposition is able to estimate the frequency contents of the signal at the specific
time. How to seek an optimal solution is the most significant aspect for Spectral
Decomposition with Sparsity Constraints (SDSC). In this paper, the L; regularized
L»-norm is employed as the objective function, the Ricker wavelet is chosen to construct
a wavelet library and the optimal solution is obtained by the Iterative Soft Thresholding
Algorithm (ISTA). We apply SDSC to the synthetic and field examples. The former
show that the SDSC method does a better job in both time and frequency resolution than
the traditional spectral decomposition technique, namely the continuous wavelet
transform (CWT) method, which always suffers from the conflict between time
resolution and frequency resolution. Applications to field data further indicate the
potential of the SDSC method in identifying the strong anomalies related to hydrocarbon,
and detecting the variations in amplitude associated with faulting.

KEY WORDS: spectral decomposition sparsity constraint; continuous wavelet
transform, hydrocarbon detection, fault identification.

INTRODUCTION

Spectral decomposition has proven a powerful tool in reservoir
characterization (Chen et al., 2014; Radad et al., 2016), and has been
utilized for thin bed analysis (Partyka et al., 1999), subsurface structures
and reefs for identification (Marfurt and Kirlin, 2001 ; Liu and Marfurt, 2007),
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seismic attenuation estimation (Reine et al., 2009), ground-roll suppression
(Liu and Fomel, 2013; Liu et al., 2016), random noise attenuation (Bonar,
2013), hydrocarbon indicator (Castagna et al., 2003; Farfour et al., 2013;
Chen et al., 2014), and seismic dispersion anomalies and channel sands
detection (Odebeatu et al., 2006; Wu et al., 2014). Currently, many
approaches have been developed for spectral decomposition. The short time
Fourier transform (STFT) is commonly used, which generates a localized
time-frequency representation of a time series by applying Fourier
transform on windowed seismogram (Allen, 1977). However, the window
length has a strong impact on time-frequency resolution, specifically, a
small window is well resolved in time but poorly resolved in frequency,
whereas, a larger window is poorly resolved in time but well resolved in
frequency. Subsequently, this drawback of STFT is overcome by
continuous wavelet transform (CWT), where wavelets dilate in such a way
that the time support changes for different frequencies. Smaller time
support increases the frequency support, which shifts toward higher
frequencies. Similarly, larger time support decreases the frequency support,
which shifts toward lower frequencies. Thus, when the time resolution
increases, the frequency resolution decreases, and vice versa (Rioul et al.,
1991; Sinh et al., 2005). The S transform is a combination of STFT and WT,
it not only eliminates extra requirement of setting a window length for
STFT but also is characterized by multi-resolution analysis of WT
(Stockwell et al., 1996). Wigner-Ville distribution (Jeffrey, 1999) and
Cohen distribution (Cohen, 1966) have higher time-frequency resolution,
but the existence of interference or cross-product terms limits their
application. Matching pursuit (Mallat, 1993) obtains time-frequency
representation by decomposing the signal in time-frequency atom library
which has been created. Despite its higher time-frequency resolution, this
occurs at the expense of heavy computational cost due to the redundancy of
atom library. Portniaguine and Castagna (2004) described seismic signal
spectral decomposition as an inverse problem.

The conventional spectral decomposition aims at decomposing the
seismic signal using some basis functions and the projection of it is referred
as time-frequency map. Although the physical meaning of this approach is
very clear and the algorithm is relatively simple, its time-frequency
resolution severely depends on the chosen basis functions. Furthermore, a
priori information is also not easily added to spectral decomposition
procedure. In this paper, the sparsity constraint is introduced into spectral
decomposition, which is described as an inverse problem solved by an
Iterative Soft Thresholding Algorithm (ISTA). (Daubechies et al., 2004)
We apply Spectral Decomposition with Sparsity Constraint (SDSC) to the
synthetic and field examples to illustrate its potential in identifying the
strong anomalies related to hydrocarbons and detecting the variations in
amplitude associated with faulting.
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THEORY

The convolution model states that a seismic trace, s(7), is composed of
the convolution of a wavelet, w(?), and the reflectivity sequence, r(f), with
random noise #(#) ( Robinson and Treitel, 1980).

s(t) =w(t)=r()+n(t) . (1)

However, eq. (1) cannot reflect the relationship between frequency and
time. Therefore, as illustrated in Bonar et al. (2010), a seismic trace can be
described as the convolution of multiple wavelets composed of different
frequency contents and pseudo-frequency dependent reflectivity with
additive noise.

M

s(t) = 2 [w, ()7, (1) ]+ n(t) 2
m=1

where w,(f) denotes the specific wavelet and its dominant frequency is

related with m. r,(f) is the wavelet-dependent reflectivity series. The

advantage of using eq. (2) to represent the seismic trace is that the

wavelet-dependent reflectivity series is capable of highlighting that

frequency content corresponding to w,,(?) in the signal s(7).

In terms of linear algebra, eq. (2) can also be written as:
Rl

-

R
s=(W, w, L. w,) M| Dxen 3)

R

where s is the seismic signal, x is an ensemble of wavelet-dependent
reflectivity series {R,,m =0 1,2,K,M}, D is the convolution matrix library,
W, and R, are the frequency-dependent wavelet convolution matrix and
reflectivity series, respectively, which can be represented as:

M

[wy,wy_,L ,w,0,0,L ,0] EA

W - 0,wy,wy_,L ,w,,0,L ,0 R - v
M M ; 4)

0,0,0,L ,wy,w,_,L ,w 7,

where the size of W,, and R,,are (N+L-1)xL and LxI, respectively.

If the noise is not considered, the local time-frequency representation
can be obtained by solving eq. (5).

x=D"s . (5)
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However, if D is not be invertible, eq. (5) cannot be solved. To
combat this issue, eq. (3) can be multiplied by the conjugate transpose of D.
In general, D”D is invertible. Thus, the solution of eq. (3) can be
expressed as:

x=(D"D)'D"s . (6)

To obtain x mentioned above is equivalent to minimizing the following
objective function J.

J=|s-Daff ™

where "g”z denotes the L, norm.

Eq. (7) may be unstable in the presence of noise. Therefore, it is
necessary to add an additional constraint on x. The resulting objective
function is given by (Donoho, 2006).

LA, ®)

J=1”5—Dx
2

where |g|| denotes the L; norm, A is the sparsity factor.
1

There are many algorithms for solving eq. (8), in this paper, we use
ISTA to solve it, which is a proximal gradient descent method, also known
as Landweber iteration method (Landweber, 1951). The i-order recursion
formula is written as:

£
X +ED” (s-Dx,) | )

where @ is used to control the convergence rate.

The gradient descent method can also be equivalently posed through the
proximal regularization of the cost function at x_, according to (Beck and
Teboulle, 2009).

2
|z} ., a0

If the constant terms are ignored, eq. (10) can be rewritten as:

| I )
x, =mm{% x—[x,-_, ——VJ(x,-_l)} 2} . 1)

i-1?

X, = min {J(x{._l )+<x—x, VJ(xj_] )) +%||x -X,

where (x,y)=x"y.

a
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Because the L; norm for the cost function in eq. (8) is separable, its
minimization is not affected by the minimization of the data misfit term.
Therefore, the minimization of a slightly easier optimization problem,

J =l =l + Al (12)

is used to serve as an analogy for minimizing eq. (8) (Selesnick, 2009).
Here, it is assumed that s and x have the same dimensions. If we set the
derivative of eq. (12) with respect to x is equal to zero, eq. (13) can be
obtained.

=x+%sgn(x) ) (13)

The solution of eq. (13) is defined by:
x=T,(s) ., (14)

where 7}(g) denotes the soft thresholding. For a complex number Ae”, the
soft thresholding is defined as:

_ i6 5
n(Ae‘9)={(A A)e® A>A i

0 A<A

Through this analogy, the minimization of eq. (8) can be written as
follows:

x=T,s(V(ls-df)) . (16)

The iterative solution for the minimization of eq. (8) provided by ISTA
becomes,

Xt =T;.I-"2a (xi+$D” (S—Dx:')) 3 (17)

where o« is a constant greater than the maximum eigenvalue of DD".

EXAMPLES
Synthetic example

In this section, we first take a simple synthetic time series as an example
in order to demonstrate the SDSC’s high resolution both in time and
frequency. The synthetic trace [Fig.1 (a)] is composed of a 50 Hz central
frequency Ricker wavelet located around 0.1 s, a 90° phase rotated 40 Hz
central frequency Ricker wavelet located around 0.25 s, a 20 Hz central
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frequency Ricker wavelet of negative amplitude located around 0.4 s, and
two close Ricker wavelet with 30 Hz central frequency located around 0.6 s.
As a reference, the CWT is also applied to the same data. Figs. 1(b) and 1(c)
show the spectral decomposition results using CWT and SDSC, respectively.
As can be seen, there is very clear difference between them, the SDSC
exactly capture the five components that compose the synthetic signal and
obtain a higher time-frequency resolution, which makes it more obvious that
there are two completely separated events around 0.6 s. In contrast, the CWT
shows a poor performance owing to the low resolution both in time and
frequency. To access the impact of noise on spectral decomposition, a noisy
synthetic trace is tested and the results based on CWT and SDSC are
displayed in Figs. 2(b) and 2(c), respectively. It can be seen that the
time-frequency map of CWT become relatively poor because of the presence
of noise, however, the result of SDSC is less sensitive to noise and it can
still reflect that main components comprised the noisy signal well. In this
sense, the SDSC method does a better job.

In addition, in order to further illustrate the applicability of the SDSC
approach, a real seismic trace is considered, which is depicted in Fig. 3(a).
The spectral decomposition results using CWT and SDSC are shown in Figs.
3(b) and 3(c), respectively. It can be easily observed that the SDSC presents
a sparser time-frequency representation compared with CWT, and it is still
able to track the time-frequency energy locating the main seismic events in
the trace effectively.
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Fig. 1. (a) Synthetic signal composed of Ricker wavelets with different frequency and
phase. (b) Time-frequency map obtained by using CWT. (¢) Time-frequency map
obtained by using SDSC. The SDSC method shows a sparse spectral decomposition
result.
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Fig. 2. (a) Noisy synthetic signal. (b) Time-frequency map obtained by using CWT. (c)

Time-frequency map obtained by using SDSC. The SDSC method can still reveal that
main components comprised the noisy signal well.
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Fig. 3. (a) A real seismic trace. (b) Time-frequency map obtained by using CWT.
(c) Time-frequency map obtained by using SDSC. The SDSC method is still able to
capture the main seismic events effectively.
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Field examples

It is well known that hydrocarbon can cause the high-frequency
components of a seismic signal to decaying rapidly as a seismic wave
passes through it, which results in the low-frequency shadow on seismic
section. The low-frequency anomalies associated with gas-charged
reservoir have been utilized as a substantiating hydrocarbon indicator
(Castagna et al., 2003). In this section, we first utilize the gas-filled sand
reservoir (Fig. 4) as an example to validate the SDSC for the detection of
hydrocarbon. This data consists of 60 traces, the time range is from 3.5 s to
4.5 s with the time sampling interval of 2 ms. The zone of interest indicated
by the arrow is around 4 s, which has been proved to hold gas.

Trace Number
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Fig. 4. The real seismic section. The arrow indicates a gas-charged reservoir.

Figs. 5(a), 5(c) and 5(e) show the common frequency slices of 20 Hz,
30 Hz and 40 Hz, respectively, obtained by using CWT method. The results
from the SDSC-based method are displayed in Figs. 5(b), 5(d) and 5(f),
which correspond to 20 Hz, 30 Hz and 40 Hz, respectively. As we seen
from Fig. 5, the two methods exhibit the similar property, that is to say, the
low-frequency anomaly is very obvious near the gas-bearing reservoir at
20Hz, and then the amplitude is gradually attenuated at 30 Hz, until it is
nearly disappeared at 40 Hz. Unlike CWT, the SDSC method provides
higher time-frequency resolution than CWT-based approach, which is
beneficial to delineate the location and extent of the gas-filled sand
reservoir more precisely. Besides, the energy between frequency slices from
SDSC-based results is attenuated more rapidly as frequencies increase and
the variations in amplitude are more clear, which means that the SDSC
method is more sensitive to gas-charged sand and is more helpful to detect
the low frequency anomaly related with hydrocarbon reservoir.
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Fig. 5. (a), (c) and (e) are the frequency slices of 20 Hz, 30 Hz, and 40 Hz, using the
CWT method. (b), (d) and (f) are the frequency slices of 20 Hz, 30 Hz, and 40 Hz, using
the SDSC method. The variations in amplitude between frequency slices from
SDSC-based results are clearer, and the energy is reduced rapidly.
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Finally, we perform the CWT and SDSC on a 3D seismic data volume
(Fig. 6) and extract the spectral time slices around 2250 ms. Fig. 7 displays
the original amplitude map from the picked horizon. In this data set there
are some faults between inlines 100 and 200 and crosslines 600 and 1000.
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Fig. 6. A field data.
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Fig. 7. Amplitude map from a 3D seismic data volume, which shows a fault feature.
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Fig. 8. (a) and (c) are 10 Hz and 25 Hz time slices obtained by using the CWT method.
(b) and (d) are 10 Hz and 25 Hz time slices obtained by using the SDSC method. The
SDSC-based spectral time slice shows a much clearer fault.

Figs. 8(a) and 8(c) show the spectral time slices of 10 Hz and 25 Hz for
CWT. The results from SDSC-based method are displayed in Figs. 8(b) and
8(d), corresponding to 10 Hz and 25 Hz, respectively. It can be observed
that both methods present some similar characteristics at the spectral time
slices; however, there are still obvious differences among them, especially
in the amplitude and spatial distribution of the fault. The CWT gives the
blurred spectral time slices [Figs. 8(a) and 8(c)], which makes the further
interpretation about the fault difficult. Compared with the CWT method, the
SDSC-based spectral time slice shows much clearer fault [Figs. 8(b) and
8(d)], the variations in amplitude between different slices are very obvious,
which contributes to estimating the trend and extent of the fault more
effectively.
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CONCLUSIONS

Spectral Decomposition with Sparsity Constraint (SDSC) obtains higher
time-frequency resolution. Compared with the traditional spectral
decomposition technique, CWT, the SDSC method shows a sparser
time-frequency representation and is less sensitive to noise, which is
beneficial to tracking the time-frequency energy locating the main seismic
events in the trace effectively. Examples on two field sets show that the
SDSC approach is more sensitive to hydrocarbon and more effective in
detecting the low frequency anomaly associated with gas-charged reservoir.
On the other hand, the spectral time slices are also present SDSC’s potential
in delineation of the subsurface structure and stratigraphic features, such as
the fault, which is closely related with the oil and gas traps.
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