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ABSTRACT

Zhou, Y.-T. and Han, W.-X., 2018. Multiples attenuation in the presence of blending
noise. Journal of Seismic Exploration, 27: 69-88.

Simultaneous-source acquisition is a modern seismic acquisition breakthrough
that greatly increases the acquisition efficiency and spatial sampling ratio. Because of the
extremely strong blending interference caused by simultaneous shooting, most traditional
seismic data processing and imaging procedures need to be modified to deal with the
noise issue in the new acquisition paradigm. For multiples attenuation, two common
ways exist for processing the blended data, i.e., 1) multiples attenuation can be
implemented on deblended data in a conventional way and 2) new algorithms for
multiples attenuation can be developed to remove multiples directly from the blended
data. In this paper, we propose a multi-dip seislet frame based sparse inversion algorithm
to iteratively remove multiples directly from blended data. The multiples attenuation
problem can be formulated as an inverse problem with regularization applied on both
primaries and multiples components. For the noise issue, we propose to use a robust dip
estimation approach that is based on velocity-slope transformation. Instead of calculating
the local slope using the plane-wave destruction (PWD) based method, we first apply
NMO-based velocity analysis approach and obtain NMO velocities for multi-dip
components that correspond to different orders of multiples, then a fairly accurate slope
estimation can be obtained using the velocity-slope conversion equation. We use both
synthetic and field data examples to demonstrate the performance of the proposed
algorithm framework.

KEY WORDS: multiples attenuation, sparse inversion, slope estimation,
simultaneous-source acquisition.
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INTRODUCTION

Simultaneous-source acquisition provides us larger freedom in
acquiring the seismic data (Beasley et al., 1998; Hampson et al., 2008;
Berkhout, 2008; Abma and Yan, 2009; Kim et al., 2009; Abma et al., 2010;
Borselen et al., 2012; Beasley et al., 2012; Alexander et al., 2013; Abma,
2014; Abma et al., 2015; Chen et al., 2017b; Zhou, 2017) and helps the field
crews enjoy the two-folds benefit regarding both acquisition cost and shot
sampling density. No limit on temporal or spatial interval size exists in the
newly developed blended acquisition. Thus, the field acquisition efficiency
has been increased tremendously while the spatial sampling is dense enough
to avoid the aliasing issue. However, the new technology sets a greater
challenge to prepare the seismic data that is noise-free by separating
simultaneous sources, which is also known as deblending.

To date, algorithms in the literature have employed coherency-based
FK filtering (Mahdad, 2012), median-based filtering (Huo et al., 2012; Gan
et al., 2016c¢), sparsity-based methods using Radon transforms (Xue et al.,
2014; Ibrahim and Sacchi, 2014, 2015; Xue et al., 2016b; Sun and Wang,
2016; Xue et al., 2017), curvelets (Cand_es et al., 2006; Neelamani et al.,
2008; Lin and Herrmann, 2009; Liu et al., 2015a, 2016c; Zu et al., 2016a,b,
2017b), shearlet transform (Kong et al., 2016; Liu et al., 2016a), seislets
(Chen et al., 2014; Gan et al., 2015; Chen, 2015; Gan et al., 2016b,a),
different types of wavelet transforms (e.g., physical, synchrosqueezing,
empirical wavelet transforms, etc.) (Donoho and Johnstone, 1994; Zhang
and Ulrych, 2003; Gao et al., 2006; Liu et al.,, 2016b,d), or adaptively
learned sparse dictionaries (Chen, 2017; Siahsar et al., 2017a,b,c). Another
approach is to use rank-reduction techniques (Cheng and Sacchi, 2015; Xue
et al., 2016a), exploiting the fact that blending noise increases the rank of
certain data subsets. The filtering methods simply treat the deblending
problem as a noise attenuation problem (Huo et al., 2012; Aminzadeh et al.,
2013; Djarfour et al., 2014; Chen and Fomel, 2015; Huang et al., 2016; Chen
et al., 2016a; Huang et al., 2017¢c,b,d,e; Chen et al., 2016b, 2017c). The
inversion methods formulate the deblending problem as a regularized
inverse problem and use iterative solvers to tackle the inverse problem
(Wapenaar et al., 2012; Qu et al., 2014, 2015, 2016; Zu et al., 2017a).

Deblending utilizes the first-separation and second-processing
strategy and is the most straightforward way to deal with the strong noise in
simultaneous source data (Zhou, 2017; Zhou et al., 2017). The goal is to
attenuate the interference before passing the data into the traditional seismic
data processing workflow. The more advanced way for dealing with the
noise of simultaneous source data is to completely overlook the interference
and to focus only on developing robust seismic imaging and inversion
algorithms that are specifically designed for extremely noisy data (Guitton
and Daz, 2012; Chen et al., 2015; Gan et al., 2016d; Xue et al., 2016¢; Chen
et al.,, 2017d). Two main challenges in designing the direct imaging
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algorithms are (1) anti-noise constraint during least-squares based iterative
migration and (2) building an acceptable macro subsurface velocity model
(Lindstrom et al., 2016; Huang et al., 2017a). The former, again, requires a
robust denoising operator that can attenuate migration artifacts in the image
without damaging the useful seismic reflection events. The latter, however,
is extremely difficult to handle and currently is seldom investigated.

Multiples are multiplicative events seen in seismic profiles, which
undergo more than one reflections. Instead of being incoherent along the
spatial direction like random noise, the multiples are coherent and behave
nearly the same as the primary reflections, which makes the removal of them
very difficult using simple signal processing methods (Wu et al., 2016; Chen
et al., 2017a). Traditional multiples attenuation algorithms can be grouped
into two types. A wave-equation-based multiples attenuation method usually
consists of two steps: multiple prediction and adaptive subtraction
(Verschuur et al., 1992; Huo and Wang, 2009). The difficulty of this type of
demultiple approaches lays in both parts: (1) how to get a precise prediction
for all the types of multiples and (2) how to design an optimal matching
filter (MF) for the subtraction. Based on this type of approaches, there have
been many approaches for improving the attenuation of multiples, either
enhancing the prediction or enhancing adaptive subtraction (Foster and
Mosher, 1992; Admundsen et al., 2001; Huo and Wang, 2009; Fomel, 2009;
Donno, 2011). The inverse scattering series (ISS) based demultiple
approaches predict the amplitude and phase of free surface multiples at all
offsets, and do not require a Radon transform or adaptive subtraction step
and can eliminate the multiples in the presence of interfering events
(Carvalho, 1992; Weglein et al., 2003; Weglein, 2013).

The multiples attenuation problem in the presence of blending noise
has seldom been investigated in the literature until Ma et al. (2016).
Considering the similarity between multiples and primaries in spatial
coherence, the straightforward way to deal with multiples is by first
deblending and second demultipling. Ma et al. (2016) instead proposed a
first demultipling and second deblending strategy. Ma et al. (2016) extended
surface-related multiple elimination (SRME) theory, in which free-surface
multiples of the blended data can be predicted by a multidimensional
convolution of the seismic data with the inverse of the blending operator. An
adaptive subtraction procedure similar to that used in conventional SRME is
then applied to obtain the blended primaries. The method proposed in Ma et
al. (2016) cannot separate the blending noise and multiples, the results from
their algorithm are two separated datasets both with strong blending noise,
which requires a further deblending step. In this paper, we propose a direct
multiples attenuation algorithm to remove multiples directly from the
blended data via a new sparse inversion algorithm. Apart from the rejected
multiples, the blending noise can also be rejected due to the sparse constraint
applied during the inversion.
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We organize the paper as follows: we first introduce the multi-dip
seislet transform constrained sparse inversion framework for removing
multiples of different orders (and with different local slopes). Then, a
sparsity comparison will be given to support the compressive capability of
the seislet transform. Next, to deal with the difficulty of slope estimation
caused by the intense blending noise, the robust slope estimation strategy
from velocity analysis is introduced after the multi-dip seislet constrained
method. We use both synthetic and field data examples to demonstrate the
performance of the algorithm in rejecting both multiples and blending noise.
We draw some key conclusions at the end of the paper.

THEORY

Multiples attenuation by sparse inversion

Suppose the seismic data is composed of M components each with the
primary reflections or multiples of different orders. The recorded data can be
formulated as (Wu et al., 2016)

M
d= rX m; , (1)
i=1

where m; is the i-th component, and I' is a blending operator that blends
different shot records onto one shot record (Zhou, 2017).

We can use the least-squares method with a regularization term to
transform it to an optimization problem:

M 2 M
d—l‘Zmi +82R(me) ; (2)
i=1 2

where R is a regularization term. ||*||; denotes the L, norm of an input vector.

1
=z

=1

Given the local slope corresponding to mi, the equation with sparse
constraint in the seislet frame domain can be can be expressed as

M

d—TZml

i=1

1
1=3

2 M
+22 ) lamil, ®)
2 i=1

where A; is the seislet transform for i-th component ||-||; denotes the L,
norm of an input vector.
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A projection-onto-convex-sets (POCS) solver can be used to solve eq. (3):

mi“"'l — Ci min + AFH [d = FZ mi] ) (4‘)
i=1
where C; is a soft-thresholding operator in the seislet frame domain:

Ci=A7'TA; . &)

A is the model update length, which :s usually chosen as 1/N and N is the
number of simultaneous sources. A; ! denotes inverse transform. T, denotes
the soft-thresholding operator with an input threshold value 7 . In this paper,
we use an intelligent threshold value selection strategy called percentile
thresholding. We preserve a constant percentage of the largest coefficients to
achieve the thresholding. Thus, the threshold value 7 is intelligently adjusted
by the percentage we use. Generally, we select a percentage less than 5% to
reject the small-amplitude coefficients.

Iterative deblending based on seislet domain sparsity constraint

The sparse inversion based deblending method requires that the
seismic data is sufficiently sparse in the transform domain. The commonly
used sparse transform includes the curvelet transform, Radon transform,
regular Fourier transform, wavelet transform. In this paper, we propose to
utilize the seislet transform to regularize the model.

The seislet transform is based on the second-generation wavelet
transform and thus it can be implemented sufficiently. It constructs the

forward transform by iteratively predicting and subtracting between the odd
and even traces:

- Finding the difference between odd traces and predicted odd traces
(from the even traces)

r =o—P[e] . (6)

where o denotes the odd trace, e denotes the even trace, r denotes the
difference, and P is the predicting operator.

- Updating the even traces by
c=e+U[r] . (7

where ¢ denotes the updated trace, and U is the updating operator.
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Fig. 1. (a) Simple seismic data with hyperbolic events. (b) FK spectrum. (c) Wavelet
domain. (d) Curvelet domain. (e) Seislet domain.
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To demonstrate the better performance of seislet transform when used
to constrain the model, we conduct a sparsity comparison. Fig. 1 shows a
comparison between different sparse transforms. Fig. 1a shows the synthetic
data, which contains three hyperbolic events. Figs. 1b, lc, 1d, and le show
the sparse domains of regular Fourier transform, wavelet transform, curvelet
transform, and seislet transform, respectively. Fig. 2 shows the coefficients
decaying diagrams of the four sparse transforms. We plot the diagrams by
sorting the coefficients (in terms of amplitude) in different domains into 1D
vectors and plot the normalized vectors. The faster the diagram decays, the
sparser the corresponding transform is. It is obvious that the diagram of the
seislet transform decays fastest, which indicates that the seislet transform

domain is the sparsest.
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Fig. 2. Coefficients decaying diagrams.

Robust slope estimation

We follow the velocity-slope transformation given by Liu et al.

(2015b):
X

’

(8)

where 1, is the zero-offset traveltime, #(x) the traveltime recorded at offset x,
v2(t,) is the NMO velocity, o denotes the local slope. Eq. (8) can be
derived straightforwardly from the hyperbolic approximation of traveltime

in common-midpoint domain:
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x2
tx)= e +m ; (€))

Taking the derivative of eq. (9) with respect to variable x: o = dt/dx,
we arrive at eq. (8). When the dipping components in the seismic gather are
all corresponding to multiple reflections of different orders, eq. (8) can be
used to obtain slope fields corresponding to different multiples by
substituting v and #, with the corresponding v,,, and #,, picked from the
NMO-based velocity spectra. More importantly, the advantage of the
velocity-slope conversion is that NMO-based velocity analysis is relatively
robust to the blending noise in the raw seismic data. However, directly slope
estimation from the plane-wave destruction (PWD) algorithm (Fomel, 2002)
is much more sensitive to the input noise level. We will demonstrate the
robust performance of the velocity-slope estimation when discussing the
performance of numerical examples. It is worth mentioning that the robust
slope estimation from velocity-slope conversion works only in the CMP
gathers. When the multi-dip components have much contradicting dips,
other methods (although not robust enough), e.g., the methods used in Gan
et al. (2016b), need to substitute the presented slope estimation method. We
also admit that a flexible and robust multi-dip slope estimation algorithm is a
topic that is worth being investigated, which can make the iterative seislet
frame inversion based deblending algorithm work better.

EXAMPLES

In this section, we will use one synthetic and one field data example to
test the performance of the proposed algorithm in realistic situations. Fig. 3a
shows the unblended synthetic data that contains multiples of different
orders. Fig. 3b shows the blended data, where the useful reflections and
multiples are masked by strong blending interference. NMO-based velocity
spectrum of the blended data is shown in Fig. 4. The peaks on the spectrum
correspond to multiples of different orders. The black strings on the top of
the spectrum denote the picked velocities for different components.

Figs. 5 show the slopes obtained from the velocity-slope conversion.
The resulting slopes are very smooth and are not affected by the strong
blending interference. Then, we applied the POCS based iterative framework.
Each dipping component is constrained by seislet transform of a specific
slope field. Figs. 6a-6d show the first, second, third, and fourth decomposed
component from the blended data. Figs. 6b-6d correspond to the multiples of
first order, second order and third order.
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Fig. 3. Synthetic example. (a) Unblended data containing multiples of different orders.
(b) Blended data with strong blending interference.

We then validate the single-slope property of each decomposed
component by applying the NMO-based velocity analysis to each
decomposed component. Figs. 7a-7d show the velocity spectra of the first,
second, third, fourth component, respectively. The comparison of velocity
spectra confirms that each component is pure-mode and all multiples are
removed during the inversion.

Finally, we apply the proposed algorithm to a marine field dataset.
The field data containing multiples and blending noise is shown in Fig. 8. In
this example, we simply use M = 2 to decompose the data into primaries and
multiples. The demultipled result and the corresponding removed multiples
are shown in Figs. 9a and 9b. Figs. 10a and 10b show the velocity spectra
corresponding to the primaries and multiples.
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Fig. 4. Velocity spectrum of the blended data.
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Fig. 5. Slopes converted from the velocity spectrum of blended data. (a) Local slope of
the first component. (b) Local slope of the second component. (¢) Local slope of the third
component. (d) Local slope of the fourth component.
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Fig. 6. Decomposed components from the blended data. (a) First component. (b) Second
component. (c) Third component. (d) Fourth component. The second to fourth
components correspond to multiples of different orders.
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Fig. 7. (a) Velocity spectrum of the first component. (b) Velocity spectrum of the second
component. (¢) Velocity spectrum of the third component. (d) Velocity spectrum of the
fourth component. Note that the velocity spectrum comparison confirms the effectiveness
of the proposed method in rejecting multiples.
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Fig. 9. (a) Demultipled result. (b) Removed multiples.
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Fig. 10. Velocity spectra of (a) demultipled result and (b) removed multiples.

CONCLUSIONS

Multiples attenuation in the presence of blending noise can be
formulated as an inverse problem, which can be solved by sparsity
regularized inversion based on the projection onto convex sets (POCS)
framework. The seislet transform has a better compression capability than
the state-of-the-art sparse transforms and is suitable for constraining the
primaries and multiples of different orders during iterative inversion. In the
paper, the multi-dip problem caused by the morphological difference
between primaries and multiples and the inaccurate slope estimation
problem caused by the blending interference have been solved based on the
multi-dip seislet frame method and the velocity-slope conversion. The
synthetic example shows that normal moveout (NMO) based velocity
analysis is robust in blended data. Thus, slope of the multi-dip components
in the original data can be robustly obtained from velocity-slope conversion
using the velocity spectra of different dipping components. Field data
example further confirms the validity of the proposed algorithm in the
practical situation.
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