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ABSTRACT

Li, G.-H., Li, Y. and Lu, X., 2018. Seismic events detection in strong low-frequency
background noise by complex shock filter. Journal of Seismic Exploration, 27: 57-68.

Low-frequency random noise in seismic exploration is difficult to suppress, because it
is mixed with seismic events in time and frequency domain. In view of the line-like
texture characteristic of seismic exploration and the line structure which seismic events
show, we detect seismic events in noisy data by complex shock filter which is generated
by incorporating the complex diffusion equation and shock filter. This method can detect
seismic events in strong low-frequency random noise, and separate signals from noise
effectively. Both the processing results of the synthetical records and the field data show
the validity of this algorithm applied in events detection. The SNR (Signal to Noise Ratio)
and resolution of seismic data is greatly enhanced.

KEY WORDS: complex diffusion equation, shock filter, event detection, SNR,
resolution enhancement, low-frequency random noise.

INTRODUCTION

Seismic events include most useful information, and have important
significance in seismic signal analysis. For example, seismic events at time
to reflect the interface depth in part, the offset of seismic events means the
possibility of fault, and there is some relationship between the dynamic
characteristics of seismic waves and stratigraphic characteristics, etc.
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The recognition and detection of useful information is an important
research field all the time. People use various ways to detect and recognize
seismic events for the SNR and resolution enhancement of seismic data,
including edge detection (Bondar, 1992), neural network (Liu et al., 1989),
wavelet (Li and Zhu, 2000), pattern recognition (Witkin, 1983) and chaos
theory (Li et al., 2006), etc. Moreover, 3D structure visualization research,
tomography and other image processing methods open avenues for this
research. Time-frequency characteristics of low-frequency seismic random
noise are similar with seismic signals, and the signal-noise separation is a
thorny problem in seismic data processing (Zhang, 2015). There are many
methods effective for broadband random noise but ineffective for
low-frequency noise.

In recent years, partial diffusion equation (PDE) techniques have been
extensively applied to seismic profiling processing, especially which is
generated from heat diffusion. The diffusion filtering method is evolving
through several levels, from linear to nonlinear, isotropy diffusion to
anisotropy. The linear PDE method is introduced to image processing by
Witkin (Witkin, 1983) and Koenderink (1984) in the 1980’s, then Perona
and Malik (1990) addressed this issue by using the general diffusion form to
construct a nonlinear isotropy adaptive denoising process. Fhemers and
Hocker (2003) applied the diffusion filtering method to seismic data
processing for the first time, and proposed the structure-oriented
edge-preserving anisotropy diffusion smoothing method which can enhance
the structure characteristics of seismic data (Fhemers and Hocker, 2003).
Directly inspired by quantum mechanics, Guy Gilboa (Gilboa et al., 2002,
2004) promoted the real anisotropy diffusion equation to complex by
combining shock filter which is proposed by Osher and Rudin (1990, 1991).

In this paper, complex shock filter is used to detect seismic events in
strong low-frequency random noise, and the detection results are compared
with the results of complex diffusion equation. The comparative results
show that seismic events detected by complex shock filter can appear clearly
in whether the synthetical records or the field data, and the SNR and
resolution is improved obviously.

THEORY FOUNDATION

Diffusion equation

The diffusion equation is derived from heat equation which describes
the distribution characteristics of heat source at different locations and
different time. It is written by (Nagasawa, 1993)

I,=0,V’10<0,€ER

]‘:=0=IO . (1)
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where /; represents the noisy signal, o, the diffusion coefficient whose unit
is m*s ', and V the gradient operator, respectively. The subscript ¢ in
denotes the partial derivative 6/0t .

In eq. (1), the noisy signal /; is taken as the initial condition, and the
solution / is the de-noised signal by diffusion in the scheduled time.

Schrodinger equation

The Schriédinger equation which is a basic equation of quantum
mechanics, describes the stationary state of a particle in a three- dimensional
potential field. It can be written as

2
ih@ = —h'—A®+ V, (x)©
ot 2mp P

; (2)
where ©=0(/,x) denotes the wave function of quantum particle, m, the
partical mass, / the reduced Planck constant and 27 =6.626x107*J s,
V,(x) the external potential field, A = (8"/ax*)+(&%/6y*)+(&"/oz") the Laplace
operator, j=./—] the imaginary unit, respectively.

It can be seen that the Schrodinger equation is the diffusion process of a
complex wave function. Eq. (1) is a free particle Schrodinger equation when
Vo(x)=0.

Complex diffusion equation

Gilboa, Sochen and Zeevi (Gilboa et al., 2002, 2004) expand the
diffusion equation from the real number field to the complex number field.
The complex linear diffusion equation which is the combination of eq. (2)
and the free particle Schrédinger equation can be expressed as

u, =Du,,DeEC
, )

u(x,0) =uy,xER

in which x denotes the distance variable, T i1s the time variable of the
complex field and T = ¢,t,f > 0, ¢ is the time variable of the real field anﬁl
CpsCp €C is the constant, D is the diffusion coefficient and D = rpe’,
rp is the modulus of D, i is the imaginary unit, & is the phase angle and

86(—%,%}, uy is the noisy signal, and u(x,t)EC.
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It is noticed that when eq. (3) is applied to signal processing in seismic
exploration, the physical meaning of ¢ and x would change accordingly. The
parameter / is a non-dimensional parameter instead of the time variable, and
x denotes sampling point of a single channel seismic signal in seismic
records instead of distance variable. u, denotes a noisy signal which is the
initial condition of eq. (3), and u(x,?) denotes the de-noised signal.

The basic solution of eq. (3) is expressed by
(-x*/4tc )

h(x,t)=—L ; (4)
2\/ercp
where K,(K,€C) is a constant related to ug, and satisfies K, = 1 when
¢p ER,

When the real part and the imaginary part are separated, eq. (4) can be
written as

h(x,t)=Kp -ig/2 —xzC"SS’("""D}Q&:sin9!(4m-D)

2y ¢ 5)

ice(x,t)

=K ,A4,8,(x,t)e
_x2 ]
1 202(1)
LX) =—— ’
8o(x,1) Z=0)
1
o(t) = \2trp /cosé A= ﬁ ;
cos(6)
x*sin6 0
4f?'D 2

?

a(x,t) =

and the other parameters are the same as the above.
There needs to be }i_%h(x’f) = 5(x)’ if eq. (3) satisfies the initial
condition 2(x,) = u. It can be known K ,=1/4, in eq. (5) by reason of

ic(x,t)

:i_lj‘égu(x,r)e =0(x), and the basic solution of eq. (5) can be written as

h(x,t) =g, (x,t)eia(x’”. When 1> () and -0, eq. (5) can be written as
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éi_l:lo Re(u) = g, *u,

. Im(u) ’ (6)
lim ———= =trpAg_, *u
50 0 DREo *Uy
in which Re(w) is the real part of u(x,f), Im() is the imaginary part of
u(x,t), ug is the noisy data, A the Laplace operator, respectively.

From eq. (6), it can be seen that the real solution is the convolution
between a Gaussian window and noisy data. This can be used to smooth the
noisy data. The imaginary solution is the second derivative of the real
solution. This can be used for edge detection.

If the imaginary solution of eq. (6) is directly used for seismic events
detection in strong low-frequency noise, the detected edge is fairly rough,
and could not detail stratum information.

Shock filter

Shock filter proposed by Osher and Rudin (1991) is a
hyperbolic equation. It can be used as a stable sharpening process, and its
basic idea is that a dilation operator is used at the maxima of an image while
a erosion operator at the minimum. It is estimated that whether a pixel is
around the maxima or minimum by Laplace operator. The shock filter
equation is expressed as (Gilboa et al., 2002)

I.r = _V\:\lF(I\.‘t) 3 (?)

where F must satisfy F(0) = 0, and F(s)sign(s) =0. When F(s) = sign(s),
the typical shock filter equation is written as

f.' =_Sign([n')|[x‘ ’ (8)

The extension of eq. (8) from I-dimensional space to 2-dimensional space
can be written as

1, =-sign(l,, VI 9)

where 77 denotes the gradient direction.

Contrary to noise smoothing, shock filter can sharpen edges, and it is
applied to increasing differences on both sides of grey image corners. This
process is sensitive to noise, even though very weak noise would be
amplified by shock filter. The combination of shock filter and partial
differential equation can control the sensitivity to noise, and have better
edge-enhancing effect. The filtering operator F(s) in eq. (7) has significant
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effect on filtering process. In view of the importance of the second
derivative, eq. (9) can be expanded in order to enhance edge sharpness,
which can be expressed as

I, =- & arctan(al 1)\ |+ AL, . (10)
J

in which a denotes the sharpening coefficient which controls the sharpening
intensities around the gradient zero-crossing. Where A is the complex
diffusion coefficient and satisfies A= rexp(ié’) i i
in x-direction. When & is close to zero, the i 1magmary part is approximated
as the Laplacian transformation of Gaussian convolution of an image, and it
can be used for edge detection. This operator is second smoothing derivative,
it makes scale change with time instead of Gaussian convolution of the
image.

From egs. (9) and (10), the equation of the complex shock filter can be
derived, which is expressed as (Gilboa et al., 2002)

(I

I, = —zarctan(alm(i
/1 6

Eq. (11) is expanded to the 2-dimensional space, the equation is written as

2 1 =~
I = —;arctan(a Im(g))|VI| + Al + AL, (12)
in which 1is the diffusion factor of the real part, 77 the unit vector in the
direction of a gradient, £ the unit vector which is perpendicular with 77,
respectively. Therefore, /,,, /. ineq.(12)is expressed as

Ly =LY +2L 11, + 1, (L)LY +(L,)) (13)
Iy = (LY =211, + I, Y)Y +L)) . (14)

Complex shock filters can reduce edge ambiguity, its diffusion process
follows the maximum minimum principle, that is the global maximums and
minimums are confined to the initial conditions in any time without any new
local extrema. There are different weighted values in edge and smoothing
zone. In the edge zone, the orders of magnitude of second derivative are
greater around the edge zero crossing points, and the sharpness is stronger. It
can get smooth results but avoid the need for convolution between noisy
signal and Gaussian signal in every iterative process. We introduce the
complex shock filter to seismic event detection in strong low frequency
background noise. Unlike the image edge detection methods which need
realize image grizzled processing, a complex shock filter can directly detect
the effective signals of a single channel seismic record. The detected results
can stay the way of seismic records are, and detail stratum information.
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Fig. 1 shows the detection of a pure rectangular pulse signal by complex
shock filter. From Fig. 1, it can be found that the saltation edge of the pulse
signal can be detected and expressed accurately. If signal waveforms change
gently, accordingly the edge-detection waveforms change gently. For
example, a sinusoidal signal and its detection result are shown in Fig. 2, it
can be seen the waveform of detection result shown in Fig. 2(b) changes
gently just like the original signal shown in Fig. 2(a). Fig. 3 shows a Ricker
wavelet and its edge detection result, it can be seen the edge of Ricker
wavelet can be detected completely. So when a Ricker wavelet and low-
frequency noise mixes to a noisy signal, the effective signal can be detected
clearly by complex shock filter, the detection result is shown in Fig. 4.

0 0.5 15 3
(b)

Fig. 1. Complex shock filter detection. (a) Rectangular pulse signal. (b) Edge detection
result.

/ ! T T T T
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Fig. 2. Complex shock filter detection. (a) Sinusoidal signal. (b) Edge detection result.
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Fig. 3. Complex shock filter detection (a) Ricker wavelet (b) Edge detection result.
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Fig. 4. Complex shock filter detection (a) Noisy seismic signal (b) Edge detection result.

APPLICATION TO SEISMIC RECORDS
Synthetic seismic record

The method on a 40-trace synthetic seismic record with strong low
frequency is tested to investigate the detection performance of complex
shock filter. The processing results of complex shock filter and the
conventional complex diffusion equation is are compared. Fig. 5(a) shows
the noisy seismic synthetic record, the background frequency is intercepted
from the first arrival noise of a real seismic record, and its the dominant
frequency is 1~20 Hz. The dominant frequency of the three reflection events
are 6 Hz, 12 Hz and 18 Hz, respectively. The noise is difficult to separate
from effective signals. Fig. 5(b) shows the edge detection result by complex
diffusion equation and Fig. 5(c) shows the detection result by complex shock
filter. From Fig. 5(c), it can be seen that complex shock filter can detect the
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seismic events accurately from the strong low frequency random noise, and
the events are clear and continuous. From Fig, 5(b), we can see that complex
diffusion equation can detect the events roughly, but the events are not
coherent, especially the lower frequency signal.
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Fig. 5. Detection results of synthetic record (a) Noisy synthetic seismic record. (b) Result
of complex diffusion equation (c) Result of complex shock filter.

Field data processing

In order to show the feasibility and effectiveness of the proposed
approach in field data processing, we apply it to a 109-channel real seismic
record of the desert, in this record, the events are merged by the
low-frequency background noise. Figs. 6(a), 6(b) and 6(c) shows the noisy
record, the detection result by complex diffusion equation and the detection
result by complex shock filter, respectively. Fig. 7 shows the enlarged
figures which appear in the boxes in Fig. 6.

Through the comparison in Fig. 6(b) and Fig. 6(c), it can be seen that
complex diffusion equation can detect the events from the background noise
roughly, but the reflection events are still a little bit disordered, and cannot
be identified clearly. Fig. 6(c) shows the result detected by complex shock
filter, some hidden events are revealed, the events are more continuous and
smoother, and the resolution of the field data is enhanced obviously. Besides,
complex shock filter can effectively suppress surface wave interference.

CONCLUSION

Complex shock filter which is obtained by combining complex diffusion
equation with shock filter is applied to seismic events detection in this paper.
It has both good noise immunity and ability of keeping edge. Complex
shock filter can detect seismic events clearly from strong low-frequency
background noise. The experimental results on seismic synthetic and field
data confirmed the effectiveness of complex shock filter. It achieved better
performance in detail preservation and resolution enhancement when
compared with the complex diffusion processing.
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Fig. 6. Detection results of field data (a) Noisy seismic data (b) Result of complex
diffusion equation.
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