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ABSTRACT

Bai, M., Wu, J., Xie, J., and Zhang, D., 2018. Least-squares least reverse time migration
of blended data with low-rank constraint along structural direction. Journal of Seismic
Exploration,27: 29-48.

The simultaneous-source acquisition has been developed to tremendously improve
the marine acquisition efficiency. The economic benefit is compromised by the
complexity of recorded seismic data. We propose an effective direct imaging algorithm
for migrating the blended simultaneous-source data without preprocessing, i.e., source
separation. While the least-squares reverse time migration can help attenuate the crosstalk
noise significantly, there are still a huge amount of artifacts existing in the final image.
We propose to apply a low-rank constraint to regularize the model during the
least-squares inversion. The low-rank constraint is applied along the geological structure
of the reflectivity image in order to fully take advantage of the structural patterns of
seismic images. Two numerical examples with different complexity validate the
effectiveness of the proposed method.

KEY WORDS: simultaneous-source acquisition, least-squares reverse time migration,
low-rank constraint, geological structure, crosstalk noise.

INTRODUCTION

The simultaneous-source technique allows simultaneous shooting of
marine sources and can obtain a significant acquisition efficiency boost
(Abma and Yan, 2009; Chen et al., 2014a). However, this technique will
also result in extremely noisy seismic data (Beasley et al., 1998; Mahdad,
2012; Abma, 2014; Chen et al., 2014b; Chen, 2015a; Chen and Fomel, 2015;
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Xue et al., 2017; Zu et al., 2017b,a). One way for solving the strong-noise
problem is by first separating the sources and then doing imaging and
inversion on the separated sources (Chen, 2015b; Zu et al., 2016; Gan et al.,
2016a,b; Qu et al., 2016; Chen et al., 2017a; Chen, 2017). The advantage of
this strategy is that the subsequent processing, migration, inversion
framework after source separation do not need to be changed since the
separated sources are just like the traditionally recorded data. The
disadvantage of this method is that numerous effort need to be spent on the
source separation process and it is hard to say that there are no damages
caused to the useful reflection signals during this step. Another strategy for
tackling the interference is by designing robust imaging and inversion
algorithms to be applied on simultaneous-source data directly (Verschuur
and Berkhout, 2011; Chen et al., 2015b; Gan et al., 2016c¢; Xue et al., 2016;
Chen et al., 2017b).

The least-squares reverse time migration (LSRTM) method has been
proven to be one of the most effective methods to migrate the
simultaneous-source data (Dai and Schuster, 2011; Xue et al., 2016). The
LSRTM algorithm for blended data takes the blending operator into account
for formulating the forward operator. Instead of inverting the reflectivity
image from the clean traditionally acquired data, it can invert the reflectivity
model directly from the blended data. However, due to the serious
ill-posedness of the problem and the large interference during two-way wave
propagation of the born modeling operator, the inverted image from LSRTM
will still contain a lot of artifacts. A regularization method should be used to
warrant an acceptable reflectivity model. In this paper, we propose a
low-rank constraint to regularize the ill-posed LSRTM for blended data. The
low-rank constraint is applied along the geological structure of the image to
guarantee the smoothness of the image. We use two numerical examples to
demonstrate the performance.

THEORY
Born approximation

Consider the acoustic equation in a constant density media,

1 & ;
(U—Q otz Vz) vt

where v(x, 7) is the acoustic velocity and u(x, ) is the wavefield. f(x, 7) is the
source function. Considering that v can be expressed as a summation
between a smooth background velocity v, and a velocity perturbation dv:

; (1)
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v =g+ 0v , ()

the wavefield can be expressed as a summation between two wavefield
components:

w=uo+ou (3)

The field u, corresponds to the direct wave, while the field Ju
corresponds to the scattered (or reflected) wave field. Inserting eqgs. (2) and
(3) into eq. (1):

(#3_2 - Vg) (up + ou) =

(vo + dv)? Ot? . (4)

Considering that
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eq. (4) can be derived as
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Considering the wave equation with background velocity:
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eq. (6) can be further simplified as
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by assuming (26vIvy (%101 Sv = 0. Comparing egs. (4) and (8), we see that
the reflected field Ju generated by a velocity perturbation dc can be
interpreted as a secondary wavefield propagating in the unperturbed medium
and due to secondary sources excited by the primary field. Let » = 20v/v, the
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linearized wave equation with respect to the reflectivity model can be
expressed as

r 02 1 02
%w’u(] — (‘U—{z)w — VQ) o.

)

The regularized inverse problem

In a matrix-vector form, the forward modeling of reflection seismic
data using the Born approximation mentioned above can be simply
expressed as

Lr=d , (10)

where d is the traditionally recorded data, r denotes the reflectivity model,
and L denotes the Born modeling operator.

Simultaneous-source acquisition allows multiple sources to be shot
nearly simultaneously to obtain a huge improvement of efficiency. Because
of the simultaneous shooting, the traditional data are blended together and
the obtained data can be very noisy because of the interferences of neighbor
crews. The blending process can be formulated as follows:

b=Td , (11)

where I' is the blending operator (Mahdad, 2012), which blends different
shot records onto one receiver record (node) according to the shot schedules
of different shots. b denotes the blended data. Combining eqgs. (10) and (11),
we obtain the classic form of inverse problem:

Fr=b (12)

where F = I'L is the forward operator, r is the model to be estimated, and b
is the observed blended data.

Direct inversion of eq. (12) is not possible because of the extremely
large forward matrix and the serious ill-posedness of the inverse problem
(Gan et al., 2015; Chen et al., 2015a; Zhong et al., 2016; Liu et al., 2016b,a;
Kong et al., 2016). In order to stabilize the inversion, regularization needs to
be added to the objective function of least-squares data misfit:
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J=|b—PFr |5 +uR(r) : (13)

where ||-]|, denotes the L, norm of an input vector, and R denotes a
regularization operator applied on r. u denotes a balancing parameter
compromising the weights between data misfit and extra regularization. In
this paper, we propose a novel structural low-rank constraint for regularizing
the reflectivity model. The new constraint is applied so that the seismic
image is locally low-rank when mapped to a predefined matrix form that
should have a low-rank structure for true reflectivity model. In the shaping
regularization framework (Chen et al., 2014a; Xue et al., 2016; Chen and Jin,
2015; Wu et al., 2016), the objective function (13) can be minimized by the
following iterative framework.

rny1 = S(Cn + anSn) (14)

where S denotes a constraining rank-reduction operator, o, denotes the step
size of model update, and s, denotes the updating direction. oy and s, can be
obtained from the conjugate-gradient (CG) method. In the next section, we
will introduce in detail the constraining operator §.

It is worth mentioning that in eq. (13), R is an abstract operator, which
we cannot formulate into a matrix form. The constraint R is used to enforce
the model to be “smooth™ along the structural direction. Eq. (13) is a normal
regularization form for least-squares inversion. Usually R is chosen as || r ||2
or || Lr ||2 which indicates the traditional Tikhonov regularization. Eq. (13)
is convenient only if we can formulate the R into a matrix form or an
explicit formula. However, for many other cases where the constrain is
simple but is not able to be explicitly formulated, it is not easy to use eq. (13)
to solve the problem. Shaping regularization framework was proposed by
Fomel (2007) for resolving such inconvenience.

Lowrank and structural low-rank decomposition operator

A seismic image can be expressed as a matrix, where m denotes the
number of vertical samples and n denotes the number of spatial traces.
Suppose the image matrix is composed of useful signal component S and
artifacts N. S and N are of the same size as D. If we assume the artifact
(noise) component N is composed of small random perturbations, an optimal
estimation of S following the low-rank approximation theory can be
understood as solving the following optimization problem:

min || N [|%

st.rank(S)=k, D=S+N, (15)
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where k denotes the rank of the signal component. ||| denotes the
Frobenius norm of an input matrix. The problem can be efficiently solved
via singular value decomposition (SVD). The observed image matrix D can
be decomposed into a group of eigen-images via the SVD. The low-rank
component S can be described with a few eigen-images that are associated
with the largest singular values. The noise item N, however, will have
energy spread over all the eigen-images. This approach is called the
low-rank approximation method.

The SVD of the image matrix D can be expressed as:
D=UxV”, (16)

Here, U is composed of the eigenvectors of DD". V is composed of the
eigenvectors of D'D. X is a diagonal matrix composed of the decreasing
singular values. Let us denote U, X, and V in the following form:

U= [u17u2:'“ }un]}
¥ =diag(oy,0,--- ,00),
V = [vy,va, -, vyl (17)

The vectors uj and vj are also called the propagation vectors and the
eigen- wavelcts respectively. The singular values oj are sorted such that 61 >
6, =+ > op. They can be obtained by calculating the posmve square roots
of the eigenvalues of the data covariance matrix DD'. Eq. (16) can be
expressed as:

n
D= E /\z‘llg'VET
i=1

where ujv; is the rank-one matrix called the i-th eigenimage of D. Thus,
from eq. ({8), the seismic image can be decomposed into » eigenimages, the
energy of which corresponds to the value of each element in matrix X.

; (18)

We can remove the eliminating the artifacts in seismic images by
selecting the first & eigenimages (Freire and Ulrych, 1988; Huang et al.,
2016, 2017b,a):

k
A T
Dgya = § oiu;V;
i=1

(19)
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If a 2D seismic image contains curved events, the image matrix D is not
low-rank. We need to apply a data mapping in order to create a matrix that
have a low-rank property (Chen, 2016). Fig. 1 shows an example where the
curved noisy data does not have a low-rank feature, i.e., the singular value
matrix does not have distinct large singular values. Fig. 1(a) shows the data.
Fig. 1(b) shows the singular values in an amplitude decreasing manner. We
can apply a local flattening operator to the data in order to map locally
curved events into flattened events. We can create many local windows
centered by each trace and flatten the traces in each local window, where it
is assumed to have a low-rank feature.

Singular values

Time (s)

(a) (b)
Fig. 1. (a) Noisy data. (b) Singular values corresponding to (a).

We extract one flattened window and show it in Fig. 2a. Fig. 2b shows
the corresponding singular values of the flattened gather. It can be seen that
this flattened gather has a distinctly large singular value, thus the rank of the
data is decided to be 1. By applying the low-rank decomposition eq. (19), we
can remove the artifacts (noise), as shown in Fig. 2c. The middle trace in
each local window after low-rank approximation is then extracted to output
the denoised trace where the local window is centered. We do the data
mapping by a recursively predicting strategy. We recall that the target of the
data mapping is to create a flattened gather in each local window centered at
each trace. Let the width of the window to be 2N + 1, then the central trace
dj can be predicted from its neighbor trace dj+j in a recursive manner
following the prediction relation from the p-th to the (p+1)-th trace:

o,Ax o,Ax
uv—i—l = ¥ e p uv+1 P uv’
Pl ( At ) p * At P (20)
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which is derived from the discretized formula of the plane-wave
approximation of the wave equation

ouw % _,
az ot 1)

where u(1,x) is the seismic record and o is local slope. The local slope o is
the a prior knowledge of the morphology of the seismic data, which can be
calculated robustly using the plane-wave destruction (PWD) algorithm
(Fomel, 2002).

The number of eigenvectors is chosen as one or two at most in the
proposed method. As we can see from Fig. 2, after local flattening, the
number of distinct singular values is one. So we normally choose one as the
rank. All the results shown in the paper come from this rank selection
criterion.

The 3D generalization of the proposed method is straightforward. In
addition to the 3D generalization of the LSRTM algorithm, the structural
operator also requires a 3D extension. In 3D case, the we need to locally
flatten the image along the inline and crossline direction by calculating the
3D slope field.

EXAMPLES

We apply the constrained LSRTM framework [eq. (14)] with the
structural low-rank approximation operator [eq. (19)] to two numerical
examples and demonstrate their corresponding performance.

The first example is shown in Fig. 3. It is a relatively simple example,
with curved sendimentary layers and a salt dome in the middle of the model.
The recorded data with two simultaneous sources are shown in Fig. 4. Note
that the direct ways have been muted for this example by subtracting the raw
data by the finite-difference modelled data from homogeneous water
velocity.
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Fig. 2. (a) Data window along the structural direction. (b) Singular values corresponding
to (a). (c) Rank-1 approximation result.

The migrated images using LSRTM method and the proposed
regularized LSRTM method are shown in Figs. 5a and 5b, respectively. The
interferences in the blended data are so strong that the energy between signal
and noise are almost equal. The migrated image of LSRTM method still
contains a huge amount of artifacts, especially in the shallow part. The
migrated image using the proposed method, however, are almost perfect,
without any residual artifacts. The local slope used in the structural low-rank
constrained LSRTM is obtained from the RTM image. The RTM image of
this example is shown in Fig. 6a. The estimated local slope map is shown in
Fig. 6b. It is obvious that the RTM image is much noisier than the two
inverted images without and with constraint that are shown in Fig. 5. The
estimated local slope follows the structure pattern well and is deemed to be
accurate enough.
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LSRTM
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Fig. 5. (a) LSRTM result. (b) LSRTM with lowrank constraint.
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Fig. 6. (a) RTM image. (b) Local slope map that is required by the structural low-rank
constraint. (b) is estimated from (a).
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The second example is shown in Fig. 7. It is a relatively complex
example, with different types of geological features, e.g., pinch-out, curved
layers, and potential oil traps. Fig. 8 shows the exact reflectivity model. It is
the target we want to obtain in this example. The recorded blended data is
shown in Fig. 9. The migrated images using LSRTM and the proposed
methods are shown in Figs. 10a and 10b. The migrated image of the
low-rank constrained LSRTM obtains a surprisingly successful performance.
Fig. 11 shows the slope estimated iteratively in this example. As a
comparison, we also show the RTM image in Fig. 12a, where significant
migration artifacts caused by the crosstalk noise are existing. Comparing
Figs. 10a and 12a, we also conclude that the LSRTM can help suppress the
artifacts to some extent and obtain some amplitude balance between shallow
and deep reflectors. Fig. 12b shows the RTM image after applying the
proposed structural rank-reduction filtering operator. It is salient that the
filtering suppress some artifacts but still not adequate to provide a artifacts
free image, which explains why we need to apply the shaping filtering
during the least-squares inversion. Figs. 13 show a comparison between
zoomed images of reflectivity model, RTM image, LSRTM image and
image using the proposed method. The comparison further demonstrates the
effectiveness of the proposed method.
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Fig. 7, Complex velocity model.
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Reflectivity Model
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Fig. 9. Recorded blended data from the complex velocity model.
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LSRTM
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Fig. 10. (a) LSRTM result. (b) LSRTM with lowrank constraint.
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Fig. 11. Estimated dip field.

We use 5 iterations for both examples. Convergence problem is a serious
problem we need to face in LSRTM of simultaneous source data. The
method can improve the convergence to some extent, but to be honest, it still
requires a large number of iterations to converge. In order to compromise the
performance and efficiency, we choose 5 iterations (or 10 iterations) for
LSRTM. According to our experience, 5-10 iterations is enough to obtain an
amplitude-balanced and artifacts-reduced image in the conventional LSRTM
method. More iterations can help obtain a more accurate result but the
superior performance is not obviously reflected from the image.

CONCLUSION

The simultaneous-source acquisition can reduce the acquisition cost
dramatically but at the expense of introducing a significant amount of
crosstalk noise in the recorded data. The LSRTM formulates the inverse
problem that takes into account the blending operator for solving the
reflectivity model directly from recorded blended data. However, there are
still a lot of artifacts in the LSRTM image. We have introduced an effective
method to regularize the model during inversion via a structural low-rank
constraint. The low-rank constraint is applied along geological structure of
the image and guarantee the smoothness of the reflectivity model. The
numerical examples show that the proposed method is superior to the
traditional LSRTM method in obtaining artifacts-free seismic images.



RTM

1 | |I H {
I}h““il A

| II AL

0.4

L}
T

Depth (km)

0.6

0 0.5 1 1.5 2 2.5 3 a.5 4 4.5 B
Distance (km)

(a)
RTM-LR

Depth (km)
0.4

0.6

0 0.5 1 1.6 2 2.5 3 3.5 4 4.5 5
Distance (km)

(b)

Fig. 12. (a) RTM result. (b) RTM with lowrank filtering.

45



46

Reflectivity Model
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