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ABSTRACT

Giireli, O. and Kayiran, T., 2018. On the non-uniqueness of the refraction solution.
Journal of Seismic Exploration, 27: 1-27.

The seismic refraction method has long been recognized as an efficient tool for
obtaining information on subsurfaces. In this paper, we investigate a dipping refractor
case and demonstrate that two sets of solutions exist. The determination of the static
(weathering) corrections of seismic surveys is largely based on refraction; such a
model may be considered to be specific and of limited interest. However, this model
has, in fact, been widely utilized since the early days of seismic surveys. It is known
that all relevant refraction analyses used to date yield a unique theoretical solution for
the researched parameters. In our paper, through a different approach, we demonstrate
that it is possible to express the solution of the refraction problem in terms of a second
degree equation and according to the behavior of the discriminant to obtain two sets of
solutions. Synthetic and real data examples are presented after the theoretical
explanation.

KEY WORDS: refraction, near surface modeling, first break picking, traveltimes,
dipping layer, reciprocal method, seismic velocities, single-shot.

INTRODUCTION

The correct estimation and removal of the effects of near-surface
weathered layers is an important issue for seismic reflection surveys. To
remove these effects we must often characterize the subsurface by
geophysical methods. Seismic refraction constitutes one of the most valuable
tools for handling static corrections properly for seismic surveys.
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Over the years, the interpretation of refraction data has been a subject
of research and several methods have been proposed in this context.

One method commonly used is the intercept method, described by
Mota (1954) for the multi-layers case. For a single refractor, this method can
be summarized as the solution of two linear equations, represented by two
shoots, with two unknowns, represented by the dip and critical angle. The
angle of incidence into the refracting bed i, and the angle of dip of the
refractor 6, are given by (A-7) and (A-8) in the Appendix as
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where v,, and v, are apparent refractor velocities, and v, is the first layer’s
velocity.

Egs. (A-7) and (A-8) lead to a single solution for i, and @,
respectively, and, starting from these equations, the velocity and the depth
found using Snell’s law and intercept time necessarily imply a unique
solution.

The second approach is the concept of time delay, which was
introduced by Gardner (1939) and used by several authors, such as
Barthelmes (1946), Tarrant (1956) and Barry (1967), resulting in a unique,
continuous profiling of the refractor, as shown by Telford et al. (1990).

We can say that in this approach, the intercept is replaced by delay
time to find the refractor position in the subsurface.

Other refraction interpretation techniques that use geometrical
reconstruction methods based on wave fronts constitute the third approach.
These techniques commonly use reciprocal time for the reconstruction of the
refractor and equally produce a unique representation of the subsurface.
Among them, Thornburgh (1930), Hagedoorn (1959), Hales (1958) can be
cited.

In addition to these methods for the estimation of the near surface
parameters, seismic refraction inversion approaches that use the tomography
algorithm should also be mentioned. They are based on the minimization of



the residual between the observed and modeled data using a least squares
criterion. Most of them are related to the ray-tracing tomography methods
(White, 1989; Doherty, 1992; Shtivelman, 1996; Zhang and Toksoz, 1998;
Chang et al., 2002). All of these inversion approaches result in an
approximate value for the researched parameter according to the assumption
made on the minimization of the residual and have no pretention to attain the
absolute value of the unknown through an algebraic expression but are
applicable to any arbitrary velocity models.

At this point, it should be noted that it is theoretically possible to reach
the non-unique solution of this problem through tomographic inversion.
However, in this case, the following remarks should be considered

1. The a priori the inversion process does not predict whether the
conditions required for non-uniqueness are satisfied, as we discussed in
the paragraph “Discussion on the non-uniqueness of the roots”.

2. According to the reference model from which we start iterating, the
result may converge to one of the solutions, ignoring the other
probable solution even if it exists.

3. To overcome this difficulty and detect two solutions at once, it is
possible to introduce the parameters over a very large scale. However,
if the non-uniqueness conditions are not satisfied, this extra precaution
appears to be useless and wasteful.

4. As we mentioned above, the inversion algorithm gives the approximate
values of the unknown parameters tributary of the least squares
criterion used for the inversion. In this respect the superiority of the
analytical solutions, if it exists, is indisputable.

5. Apart from these methods, second degree in the dip measured from the
horizontal for the first refractor interface, we propose an alternate
approach, substantially different from the others, that produces a
second degree expression for the resolution of the refraction problem.

THEORY
The general assumptions involved for one refractor model are as follows:

1. The refractor, along which the waves travel and return to the surface, is
linear.

2. The medium velocities are constant within the subsurface illumination
area of the refraction experiment.

3. The sign of dip angle of refractor is taken as positive for the positive
trigonometric direction, starting from the horizontal.

4. The recording scheme is as illustrated in Fig. 1.

From Fig. 1, we can write for the +x-direction:
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Fig. 1. Split shooting refraction for the two-layer case with dipping interface.



where

vo: the first layer velocity,

v;: the second layer velocity,

0,: the dip measured from the horizontal for the first refractor interface,

i; : critical angle for the first refracting interface,

z,: the perpendicular depth of the refractor at the receiver point (see Fig 1),
Z,: the perpendicular depth of the refractor at the shot point.

In a similar way, we find for the —x-direction
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These two last equations can be viewed as the expression of two lines
as (Fig. 2)
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where v,; and v, are apparent velocities and
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The arithmetic mean of these two equations (Fig. 2) is
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where #;; is the intercept time.
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It should be mentioned that, in order to avoid any misunderstanding,
the mean value does not imply an approximation.

For the intersection point of the mean line 7, with the line x /vy, (9)
becomes

cos 6, X,
Xe Fl =, (10)
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o

where x. is the abscissa of the intersection point. The value of x, is
obtained from (6), (7) and (10) as
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which is a function of apparent velocities, v,,,v; and vyt; and easily
calculable.

We are, now, able to determine the value of refractor velocity (v;). From (10),
we can write

v,="—x‘cose, _ (12)
(e ~.1:)
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On the other hand, by subtracting (7) from (6) we obtain
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solving (13) for v, gives
2v, sin@,

(4sin'7 g, —vj(a—b)”)/z ' (14)

v, =



Using the equality of (12) with (14) and putting

VX
A=——"0"c
(xc_votil) '
B=vj(a—b)7
4 ’
we can write
2v, sin6
Acosb) = 1—— ; s
(4szn' 491—v0(a—b)‘y
A4 -AB i 6, + 4B =V
sin” 6,
with
sin@,=y

(18) becomes

£2-LB_ g0 2By
y

o

Rearranging (20) with respect to y yields
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which is an equation of the second order for y.

Solving (21) for y, two roots
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Y= - (22)

and

vZ
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A
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are obtained.
Where A is the discriminant of eq. (21).
a=|Y_1_B| -48
Combining these two values of y with (19) yields
sin@, = $\/y_, , (25a)
sin6 =%y, . (25b)

Using the equality of (8)
vyl

Z= o ITil 26
RN =

is obtained. From Fig. 1, we can write
H,=Z,/cos6, 3 (27)

where H is the vertical depth beneath the shot point for the first refracting
interface.

The sign of the square root is determined by comparing two time
values t oaBC and t oaBC (Flg 1) If t oaBc IS smaller than toaBCs the pllJS
sign should be considered. Otherwise, the minus sign is to be taken.
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Fig. 2. Mean value £, of two ¢}, and ¢ lines.

Theoretically, two relevant y, and y, values honor the time-distance
expression. In other words, for the same intercept, vy, v, and vy it is possible
to obtain two sets of solutions of v,, @, and H, for the subsurface. This result
contradicts the existence of a unique theoretical solution given by the
conventional methods mentioned above (Fig. 3). Intersection points of the
graphs represented by eqgs. (12) and (14) give a set of solution for v, and 6,.
These two approaches necessarily yield the same results because they start
from the same equations. We provide a numerical proof of these results using
examples with synthetic and real data applications.

DISCUSSION ON THE NON-UNIQUENESS OF THE ROOTS

We start from formula (24) which is the discriminant of the second
degree eq. (23).
2

v2
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In order to get one root, the condition
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Fig. 3. Graphical solution of two distinct v, and ,, obtained from common solution of
egs. (12) and (14).
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should be satisfied. Manipulation of this formula leads to:

2
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Using egs. (15) and (16), we find



v,la-b
x(.( (2 )+1)=X(.—Vot” , (3])
_(a—b)_t,;,

2 X 2 (32)
(1 T _tu
2\Viu V) X e2)

Formula (33) defines the condition for which the non-uniqueness fails
and the solution is reduced to one root.

At this point, different possibilities are to be considered:
a. Horizontal refractor case
As a=b=1/v, =1/v, .

This means from eq. (16) that B = 0 and from egs. (22) and (23), we find that
the zero root solutions correspond to the relations

B=1-v2/4*=0 .

and

In that case from formula (21) we find

2
o

1

y'7+ >=1{y=0

and

b. Dipping refractor case with one solution:

In that case, condition formula (33) should be satisfied.
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c. Two distinct solutions:

In that case, the following inequality condition is true:
LA A7)
2 vll vrl xc '

SYNTHETIC DATA APPLICATION

An example of this method is applied to a synthetic data obtained from
a near surface model (Fig. 4). A mute is applied to this synthetic shot (Fig.
5a). From Fig. 5b, we can easily obtain the quantities of v, v,;, vpand 7 ; as

v, =1/0.0006657 =1500 m/s, (34)
v, =1/a=1/0.0004730=2115m/s, (35)
v, =1/b=1/0.0001734 = 5765 m/s, (36)
t,=c=03077 . 37)

Fig. 4. Near-surface model for synthetic data example, [Spread configurations: Number of
channel: 185, Shot Point: 200.5, Stations: 100-450, chn#1 at station 151, chn#185 atstation
335 and Station interval: 20 m].
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Fig. 5a. Muted version of the synthetic record.
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Using either one of eqs. (25a) and (25b) or the intersection points
shown in the graphical solution (Fig. 6), the following values are found for
6,,v,,H, and ,,v),H,.

6 =-15° 0; =-60.03°
v, =2999.89 m/s v, =1551.43 m/s
H, =2763 m H=938.1m
v, =2999.89m/ s
Y =155143m /s
,, 6,=15° | =60.03°

Fig. 6. Graphical solution of v, and 6, illustrating the existence of the two set of solutions.

Perfect agreement exists between t-x graphics (Fig. 7) of the two
models corresponding to two distinct solutions.

Ambiguity is removed, if necessary, taking into account a priory
information based on the geological and geophysical background. In this case
as we know, in advance, the result which corresponds to the solution obtained
by the classical method, our preference goes obviously to this solution. The
second solution is to be rejected as it does not seem plausible. The same
result is obtained by combining graphical representation of formulas (12) and
(14) as shown in Fig. 6.

At this point it may be relevant to calculate the same parameters using
classical method for comparison with the results obtained by our method. The
most commonly approach to this problem, as we mentioned in the
introduction, is the classical intercept method which resolve two unknowns
i;and g respectively the angle of incidence and the dip angle of the refractor
through two linear egs. (A-7) and (A-8). We start, then, from the input
parz}_meters (34), (35), (36), (37) and using (A-7), (A-8), (12), (26) and (27)
we find
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Fig. 7. Comparison of t-x graphics of Model-1 and Model-2
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U v, ] 17 . 1500 . 1500
I, = _—|arcsin— +arcsin—-| = — | arcsin +arcsim—|,
2 v, v, | 2 2115 5765

a

i, =30.19°.

1. v, v, ] 1. 1500 . 1500
91 = —|arcsin— —arcsin— | = —|arcsin———arcsin—— 5
2 v, v, | 2 2115 5765

) =-15.09°.

v, =v, /sini, =1500/sin(15.09) = 2988.82 m/s.

vty 1500*0.3077
l 2cosi;  2c0s(30.197)°

Z, =266.81 m.
o - Z, 266.8
: 2cosf,  2cos(-15.097)°

H,=27628 m,

Excellent concordance is observed between two sets of values as should be
expected.

FIELD DATA APPLICATION

A field data example for a 2-layer case, which is acquired from ARAR
Petrol and Gas AS, an oil and gas company in Turkey, is taken from Giireli
(2014). Acquisition parameters of the input data are as follows:

number of channels: 204,

far offset: 2170 m,

near offset: 10 m,

shot point: midpoint between station numbers 195 and 196,
group interval: 20 m,

energy source: 4 vibrators,

record length: 5 s,

sampling rate: 2 ms.
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Input data that are reduced to the floating datum (Fig. 8a) are picked in
the t-x domain (Fig. 8b).

From Figs. 8c and 8d, we can easily obtain the quantities of v,,v,,v,
and 7, as

v, =1/0.0005000 = 2000 m/s, (38)
v, =1/a=1/0.0004107 = 2435 m/s, (39)
v, =1/b=1/0.0003152 = 3173 m/s, (40)
t,=c=0.06 s, (41)

Using either one of formula (25a) and (25b) or the intersection points
shown in the graphical solution (Fig. 8e), the following values are found for
6,,v,,H, and 6,,v,,H,.

6,=8.07° 6,=42.87°
v, =2728.00 m/s v, =2019.27 m/s

H,=8822m H;=43533m

Perfect coincidence of the t-x graphics (Fig. 8f) of the two models
corresponding to two distinct solutions can be observed.

Application of the intercept method to the same field data yields

T v, 11 . 2000 . 2000

I, = —|arcsin— + arcsin = —|arcsin +arcsin——|,
2 v, v. | 2 3173

i, =47.15°.
1. v, v, ] 17 . . 2000

9] = —|arcsin—- —arcsin =—|arcsin —arcsin—
2 v, v, 2435 3173 |

6, =8.07°.
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v, =v, /sini, = 2000/sin(8.07°) = 2727.89 m/s ,

vty 2000*0.06

o"il

' " 2cosi,  2cos(47.15°) °

Z,=8823m.

_Z, 82
2cosf, 2cos(8.07°) °

1

H, =89.11m.

Equivalence of the intercept solution with the first set of values
obtained by our method is apparent. But the second set of solutions does not
appear with the intercept method.

CONCLUSIONS

In this paper we propose, in addition to the existing ones, a new
method of the refraction prospecting which has not been reported previously.
We recognize that this calculation of the refraction statics, though the method
does not imply any approximation and it is perfectly accommodating with the
computer processing, has no noticeable advantage with respect to the others.

Through this new approach, we show the existence of a second degree
solution of the refraction problem and as a subsequent result the perspective
of the distinct theoretical solutions that honor the same data. Generally
speaking the modeling related to the second solution can be hardly
encountered in geological medium. But in physical space the both solutions,
free of the geological constraints, can be easily conceivable. In that sense
interest of the second solution case appears to be theoretical rather than
prospective and investigation of this problem is not related only to the
seismic refraction prospecting.
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Fig. 8a. Gain (t¥*0.2) and AGC 1000 ms applied real data reduced to the floating datum,
[Spread configurations: Number of channel: 204, Shot Point: 195.5, Stations: 101-304,
chn#1 at station 101, chn#204 at station 304 and Station interval: 20m, Near offset: 10 m].
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Fig. 8b. t-x graphic of Fig. 8a.
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Fig. 8c. Evaluation of t-x graphic of Fig. 8b.
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Fig. 8d. Evaluation of t-x graphic with absolute of Figure 8c.
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Fig. 8e. Graphical solution of v, and &, illustrating the existence of the two set of
solutions for real data.

It should be noted that, considering the example given in this paper, the
difference between the first medium velocity and refractor velocity is
relatively poor to obtain an acceptable result without applying a special
acquisition and processing treatment. However the proposed approach in this
paper represent the very complete solution related to this problem and justly
we believe that it may deserve a place among the plethora of the various
existing refraction methods.
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APPENDIX
CASE OF RECIPROCAL TIME GEOMETRY

From Fig. (A-1), we can write for +x direction

t+=%+£+£= Z +z, +xcos€, —(Z’+z’)tani

x

: o (A1)
v, v, v, v,cosi v, v,

o o0
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Fig. A-1. Refraction along the top of a layer with velocity v, overlain by a layer with a
lower velocity v, .

> Ly v . . - . .
Putting Sitni, = v—o and after same manipulations and simplifications, we
1

obtain:

X

17 =isin(i,—9,)+£cosi,. (A-2)
o vl)

where

v, : the first layer velocity,
6 . the dip measured from the horizontal for the first interface,

i1+ critical angle for the first interface,
Z/: the perpendicular depth of the refractor at the shot point O (see Fig A-1).



In a similar way we find for the —x direction
!

- 2z; .
t, =—sin(i, +6,)+—=cosi,,
vG vO

where
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(A-3)

Z): the perpendicular depth of the refractor at the shot point C (see Fig. A-1).

Taking apparent velocities as:
% v

[ [

V™ =7 a1, YW =,
sin(i, +6,) sin(i, -6,)

and intercept times as:

T =£c0si, _22 [
v

o

vo vl

2 2z,
TR s o B B8
T, = cosi, = v, =V,
1% vV,

o

we find
v0

’
Vip

i,—6,=arcsin

[

i, +6, =arcsin

s

vla
. ik .V, o W5 |
l, =—|arcsin + arcsin
2 Vib Via: |
1 A . v, ]
6, = —|arcsin—> — arcsin
2 Via Vis |
X X 2Z > >
o SO O o, IR __[_ 2 _ 7
tx El + TII) - + vl vo
Vi Vis, VoV
!
X X 2z
= . ] 2 i 2
[ = +7,, = + V) =V
vla vla vovl

o .

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)
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’.\'
t o _(a+d
t=tnsdy o (T T
" =T,
' ;
L.
Lia x
,u:— :
\': : .x‘

Fig. A-2. Graphical evolution of the values of a,b,7},, 7},, 7, and v, .

These two last equations represent two equations (Fig. A-2), where

%
T -
B Sin(i,~8,)° (A-11)
v
Wi — (A-12)
sin(i, +6,)

The arithmetic mean of these two equations
ta_t;'*'tx— x(l_i_i)_’_(Tlu"'le)

s 2 2{v, v, 2
% 4 1
Lol —f—|F0 (A-13
2("1/; vla] )
/O 5 i
where T}, = ( = lb)
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If x_ is the intersection point of the mean line with the line =, x, is found to

v

o0

be as:

o

-7

I T /.
2 vlb vla va

Substituting (A-11) and (A-12) into (A-14) we obtain

x
(4 ’ 7 .
v—smz, cos6,+T,, =

o

RS |$*

o W
Using Snell law(sm i = ;“), (A-15) becomes
1

vl vo

- b
x,c088, x,-v.I,
and we find

b o YoXe COS 6,
7 i .
xC - vO 7}0

On the other hand if we calculate

1 I _sin(i, +6,) sin(i,-6,)

a-b=—-—= )
Via Vi Vo Vo
we find for V,
2v,sing,
v, =
i ) 7 g 172
.2 2
4sin° 6, -v,| —-—
Vis Via

(A-14)

(A-15)

(A-16)

(A-17)

As (A-16) and (A-17) are identical to (12) and (14) the rest of the
calculation is justiciable of the same procedure as explained in the main text

and we arrive to the same result.



