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ABSTRACT

Wang, Q. and Gao, J., 2017. Application of synchrosqueezed wave packet transform in high
resolution seismic time-frequency analysis. Journal of Seismic Exploration, 26: 587-599,

Time-frequency (T-F) representation is a cornerstone in the seismic data processing and
interpretation. It reveals the local frequency information that is hidden in the Fourier spectrum.
The high resolution of the T-F representation is of great significance in depicting subtle geologic
structures and in detecting anomalies associated with hydrocarbon reservoirs. The traditional T-F
representations include short-time Fourier transform (STFT), continuous wavelet transform (CWT),
S-transform (ST) and Wigner-Ville distribution (WVD). However, due to the uncertainty principle
and cross-term, these methods suffer from low time-frequency resolution. In this paper, we
introduce a new methodology for obtaining a high-quality T-F representation which is termed the
synchrosqueezed wave packet transform (SSWPT). It is the first time that SSWPT is applied to
multichannel seismic data time-frequency analysis. The SSWPT is a promising tool to provide
detailed T-F representation. We validate the proposed approach with a synthetic example and
compare the result with existing methods. Two field examples illustrate the effectiveness of
SSWPT to identify subtle stratigraphic features for reservoir characterization.
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synchrosqueezed wave packet transform, seismic data processing.
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INTRODUCTION

Geophysical data often exhibit non-stationary nature. Non-stationary in
seismic data processing means that the frequency content of signal varies as a
function of time (Cohen, 1989). The Fourier transform (FT) gives the overall
frequency information. Therefore, it is inadequate to analysis a non-stationary
signal. As a powerful tool for the analysis of non-stationary signals, time-
frequency decomposition (also called spectral decomposition) maps a 1D
seismic trace into a 2D function of time and frequency (Sinha et al., 2005),
thus it has the potential to extract local anomalous behavior that might be
buried in a broadband seismic response and to resolve thin layers at high
frequencies (Li et al., 2016). There exist various methods for time-frequency
analysis. The most commonly used approach is STFT which produces a time-
frequency map by applying the Fourier transform over a chosen time window.
In STFT, the time-frequency resolution is fixed due to the preselected
window length. A longer window leads to poor time resolution while a
shorter window improves the time resolution. Therefore, in seismic data
analysis, the resolution is dependent on the user-specified window length. To
overcome the limitations of STFT, the CWT is developed and applied in
many spectral interpretation methods (Chakraborty et al., 1995). From a point
view of window analysis, the CWT is full adaptive because the usage of scale
factor which is inversely proportional to frequency. However, the CWT
offers a time-scale representation and the scale represents a frequency band,
this makes it intuitive when we want to interpret the frequency content of the
signal. S-transform is proposed by Stockwell et al. (1996), and is
conceptually a hybrid of the STFT and the CWT. The S-transform is a fast
method exhibiting improved temporal resolution relative to the CWT that
directly provides a valid time-frequency analysis (Li et al., 2016). The
Wigner-Ville distribution (WVD) (Jeffrey and William, 1999) exhibits the
least amount of energy spread in the T-F place, however, the existence of
cross or interference term without physical meaning restricts its application.
Matching pursuit (MP) (Mallat and Zhang, 1993) decomposes signal into
waveforms selected from a dictionary of time-frequency atoms, it gives a
higher time-frequency resolution at the expense of computation due to the
redundancy of the atom dictionary. Castagna et al. (2003) use MP for seismic
spectral analysis to detect the low-frequency shadows associated with
hydrocarbon reservoirs. Empirical mode decomposition (EMD) (Huang et al.,
1998) is a fully adaptive time-frequency decomposition technique and
produces higher T-F resolution than wavelet-based method. Han and van der
Baan (2013) investigated the effectiveness of EMD and its extensions
ensemble EMD (EEMD) and complete EEMD (CEEMD) in seismic data
analysis. In spite of its considerable success in practical application, there is
still a lack of solid mathematic foundation for EMD approaches. The
synchrosqueezing transform (SST) (Daubechies et al., 2011), originally
introduced in the audio signal analysis, combines the classical wavelet
transform and a reassignment technique to increase the time-frequency
resolution. The SST has been applied to seismic time-frequency analysis
(Wang et al., 2014; Herrera et al., 2014) and obtained significantly improved
resolution than conventional methods. Following this research,
synchrosqueezing short-time Fourier transform (Oberlin et al., 2014) and a
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generalized synchrosqueezing transform (Li and Liang, 2012) have been
proposed, respectively.

We extend the studies of seismic T-F analysis with a recently proposed
method called synchrosqueezed wave packet transform (SSWPT) (Yang,
2014). Similar to SST, the SSWPT is also an adaptive method which
improves the readability of T-F map using frequency reassignment technique.
The wave packet transform (WPT) projects the analyzed signal into a family
of wave packets that is obtained through scaling, translating, and modulating
a “mother wavelet”. By employing an extra geometric parameter, the WPT is
able to obtain a flexible and well concentrated time-frequency representation,
thus facilitates seismic data processing and further interpretation.

In this paper, we show the desirable performance of SSWPT in seismic
time-frequency analysis. Firstly, we briefly describe the theory behind
SSWPT. Next, we illustrate the improved T-F resolution of SSWPT over that
of the commonly used methods using synthetic example. Finally, we apply
SSWPT on 2D and 3D filed data sets to demonstrate its potential in
highlighting geologic and stratigraphic feathers with high precision.

SYNCHROSQUEEZED WAVE PACKET TRANSFORM

In the following, L*(R)denotes the class of real square integrable function.
A mother wave packet f,o(t)EL“(R) is an analyzmg function used to localize a
signal in both frequency and time, and its Fourier transform (&)is a non-
negative, real-valued, smooth function with a support (—d,d). By scaling,
translating, and modulating this wave packet, we can produce a family of
wave packets:

w;‘b (t) - as!Zw(as (f - b))eZ.m'(r—b)a , (l)

where a,b € R and b is translation parameters, a is scale parameter and is not
zero. The time support of 2, , (¢) changes for different scales. Different

from CWT, the scale in the WPT is proportional to the centre frequency of
the wave packet. The geometric parameter s € [0,1] is a given constant which
controls the trade-off between STFT and wavelet transform WT. When s is
equal to 1, the family of wave packets would be similar to the standard
wavelets. If s = 0, the WPT is similar to STFT. Therefore, the geometric
parameter can be used to adjust the time and frequency resolution. Because of
the three free parameters, the WPT exhibits an additional degree of freedom

compared with WT and STFT. Besides, the phase factor P8 iy eq. (1)
preserves the phase information of each scale.
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wave packets. This is given by

W (@,b) =< f(t), w.,O>=a" [ f@w' (@ (-b)e™ P, ()

where 3" denotes the complex conjugate of ¥ and Wy(a,b) is the time-scale
map. Eq. (2) can be easily computed in the Fourier domain using the
Parseval’s theorem, i.e.,

W, (a,b) = ’ff fEW @ (E-ape™dE 3)

where £ is the frequency variable, (&) and ¢(&)are the Fourier transform of
f(t) and y(r), respectively. The scale factor a and geometric parameter s
adjust the support of the complex wavelet function ¥ (a”*(£-a))
squeezing and stretching it. For a purely harmonic signal ./ ép 1) = Acos(27 f, ,33/
with its Fourier transform

f(f) £ Aﬂ{é(‘f‘fg) +90(& —fg)] , €q. (3) can be transformed into

W, (a,b)=—a™" f [B(E-£)+8(E- f,)) (a” (& - a))e™dE,

a——\r'zzp ( -\ a))elmb)‘[, (4)

In the freque H\;plane if Y (E) is concentrated around & =0, then the

energ of WPT a,b)| will spread out on a time-frequency strip

g ,b): j:] a <4 } and the width of this strip depends on the support

oi Y(&). In order to solve the diffusion problem, we define the reference

instantaneous frequency (RIF) of the original signal f(7) by taking the first-
order derivative of W;(a,b) with respect to the time-shifting variable b, i.e.,

i W, (a.b)
270, (a,b) 9, 5)

v,(a,b) =

For the purely harmonic signal f(¢) = Acos(27ft), we can obtain vy
(a,b), as desired. If we expect no confusion to occur, the TF coefficients
which have the same RIF information in the time-scale plane are gathered by
transforming the (a,b) plane to the (a,v) plane via

UROEIEED Y A CH b)r (Aa);

ﬂkzll’_f (a ,:‘J)—\’,lsm-‘fl

(6)
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where q; is the k-th discrete scale variable that varies in the ringy spgc:.fégq
by T"‘@Hﬁ aﬁ'}:‘j % Av /2y, the I-th discrete frequency variable, *
and . Eq. (6) shows that the new T-F representation T¢(v,b) is
squeezed along the scale (or frequency) axis only. Fig. 1 demonstrates the
procedure of SSWPT for a special case with f(7) = Acos(40mvyf). If we treat
a and v as continuous variables without discretization, then eq. (6) is

T,(v,b) = f 1,(b)[Wf(a’ by S(Re(v,(a,b))-v)da (7

' . 0 squeez " 4
W ,(a,b)=0 X
s
- il T, (v, b)
T
a | ¥ (ab)|>0 vy

a—»A

W,(a,b)=0

> >

b b

Fig. 1. Procedure in SSWPT for signal f(7) = Acos(27zv,t) .

where dis the Dirac delta function and Re(v,(a,b))means the real part of
v,(a,b) , v,(a,b) is defined in (5) above, A{(b)={a:‘Wr.(a,b}|>e} and the
parameters ¢ >0is a hard threshold on W,(a,b) to overcome the shortcoming
that W,(a,b)~0 is rather unstable when analyzed signal has been
contaminated by noise. In (7), the operator 7} is called synchrosqueezing, and
the procedure of synchrosqueezing is integrating the TF coefficients around
the IF trajectory.

To sum up, the SSWPT is performed in the following steps:
Step 1. Apply the WPT to the analyzed signal f(7), the result is W, (a,b).

Step 2. Given a threshold ¢ >0. Atany point (a,b) for which |7, (a,b)] > ¢,
calculate the RIF v,(a,b)by eq. (5). '

Step 3. Obtain the SSWPT using eq. (6).

In Fig. 2, the WPT, RIF, SSWPT of f(7) = cos(40mt) are displayed for
a better understanding of the process.
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Fig. 2. (a) Synthetic signal £(f) = cos(40s¢), (b) WPT, (c) RIF, (d) SSWPT.

In seismic time-frequency analysis, the optimal joint time-frequency
concentration is not always required. For example, a better frequency
resolution is necessary when we estimate the tuning thickness of fluvial
channels, and a better time-localization is required for thin bed detection.
Therefore, SSWPT is suitable for the given geologic goals due to its
advantage of varying performances.

SYNTHETIC AND REAL DATA EXAMPLE

In this section, synthetic and real data examples are provided to
demonstrate the effectiveness of SSWPT. CWT and SST are also presented
as comparative methods. In all of these experiments, the CWT and SST use a
Morlet wavelet with central frequency and bandwidth estimated from seismic
signal. In SSWPT, we chose the parameter pair with d = 1 and s = 2/3. In
order to reduce the noise interference, the threshold parameter used in all
methods is £ =10"".
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Fig. 3. Time-frequency representation of synthetic signal. (a) Synthetic example,

(b) CWT, (c) SST, and (d) SSWPT. The rectangles and arrows show evident in time-
frequency resolution of SSWPT with respect to the other approaches.

Firstly, we test the performance of SSWPT with a synthetic signal,
which is composed of two initial cosine wave with 25 Hz and 40 Hz, with a
100 Hz Morlet atom at 0.3 s, three 40 Hz zero-phase Ricker wavelets at 1,
1.82 and 1.84 s, and a oscillation component with periodic representations
based on CWT, SST and SSWPT, respectively. The CWT is able to
distinguish these components but with low resolution, the energy spreads out
along the frequency which leads to mixture between the adjacent components.
The SST improves the behavior of CWT instantaneous frequency. Fig. 3
shows the time-frequency and gets a sharper time-frequency representation.
However, due to its low frequency resolution at high frequencies, the blurring
effect still exists at high frequencies. In comparison with CWT and SST, the
SSWPT perfectly delineates all these individual components and shows the
highest time-frequency resolution.

Next, we apply the SSWPT to a 2D post-stack seismic section (see Fig.
4) from CNOOC (China National Offshore Oil Corporation). We take the
51st seismic trace which is plotted in Fig. 3(a) as an example.
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Fig. 4. 2D field seismic data from CNOOC.

The time-frequency spectral based on CWT, SST and SSWPT are
shown in Fig. 5 (b)-(d), respectively. We can observe that all methods display
a decrease in frequency content over time, most likely caused by attenuation.
The SST and SSWPT produce sparer representation and show more features
than CWT. In SSWPT image, we can see clear components in the high
frequency part and the low frequency components are still accurate, which is
crucial for further seismic interpretation and better understanding the
subsurface lithology properties, however, in the result of SST (Fig. 5c¢), the
high frequency components would mix together.

The CWT, SST and SSWPT are then applied to the entire section to
assess their efficiency at resolving frequency dependent phenomena
underground. We extract the 40 Hz frequency slices using CWT, SST and
SSWPT, respectively, which are shown in Fig. 6. The slice obtained by CWT
is obscured and can not provide useful structural and stratigraphic
information due to its low time-frequency resolution. The SSWPT result
clearly detects the potential hydrocarbon reservoir that is almost lost in the
SfS’lI"l, w]]:i?ih demonstrate its effectiveness for identification and interpretation
of thin beds.

Finally, we apply these methods to stratigraphic analysis by extracting a
horizon slice from a 3D seismic data volume. Visualizing constant-frequency
attributes for a horizon from 3D cube can be used to identify geologic
structure that otherwise would not be visible on original horizon amplitude
map (Sinha et al., 2005). We calculated the 35 Hz frequency volume of the
3D seismic data using CWT, SST and SSWPT, respectively. Then the
horizon slices are extracted 38 ms under the picked horizon, as shown in
Fig.7. The 3D seismic data are not shown for commercial reasons.



595

Fig.7(a) shows the original amplitude map of the picked horizon,
where not much useful geologic information can be found. From the point of
view of interpreter, the extension of channel can be used as an important tool
for reservoir characterization. Thus, a precise detection of channels is
significant in seismic interpretation. The result based on the CWT blurs the
horizon slice, which makes the further interpretation challenging. The SST
based horizon slice improves the performance of channel delineation.
However, the result based on SSWPT characterize the channels best, and the
amplitude variation along the channels is clear.
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Fig. 5. (a) Individual trace at trace 51 in Fig. 2. Time-frequency representation from
(b) CWT, (c) SST and (d) SSWPT. All methods show a decrease in frequency
content over time, yet SST and SSWPT produce sparer representation than the CWT.
We can see clear components in the high frequency part in SSWPT and the low
frequency compoents are still accurate, if SST is applied, it would mix high
frequency components together.
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Fig. 6. Constant frequency slices using (a) CWT, (b) SST and (c) SSWPT at 40 Hz. The
SSWPT has much greater time-frequency resolution than the CWT and SST, thus better

delineating the amplitude variation near the target zones (red rectangle).
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The advantage of SSPWT is the higher time-frequency resolution which
has been demonstrated in the synthetic and field data examples. However,
one potential drawback to this approach is the computation efficiency. We
evaluated the computational cost of CWT, SST and SSWPT for both
synthetic and real data examples, which is listed in the following Table:

Methods Synthetic signal | 2D field data 3D field data
CWT 0.15s 89.82s 9504.39s
SST 0.23s 123.48s 13261.18s

SSWPT 0.31s 182.06s 19187.94s

Fig. 7. Channel detection from horizontal slices. (a) Original amplitude map. (b)-(d) 35 Hz
horizon slices based on CWT, SST and SSWPT, respectively. The SSWPT result
characterizes the channels (indicated by green arrows) more clearly.
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All experiments are carried out on a PC station equipped with an Intel
core 8-core CPU clocked at 3.6 GHz and 8GB of RAM. Although the
SSWPT is slower than the SST, it is acceptable while considering the
satisfactory results.

CONCLUSIONS

Spectral decomposition is significant for analyzing the seismic
response of subsurface feathers. In this paper, a higher time-frequency
resolution and sparser representation, called SSWPT, has been introduced to
seismic data processing. This new method incorporates the frequency
reassignment technique into the wave packet transform. It performs in two
key steps: firstly, estimate the instantaneous frequency from wave packet
transform, and then squeeze its value along the frequency axis based upon the
instantaneous frequency information. Synthetic experiment shows that the
proposed approach is effective in enhancing the T-F resolution. 2D and 3D
filed data examples illustrate the superior performance of the SSWPT
approach in better depicting the stratigraphic and structural features over
traditional approaches.
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