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ABSTRACT

Park, H., Song, H., Park, Y. and Shin, C., 2017. Journal of Seismic Exploration, 26: 541-
560.

A symmetric discretization of the Perfectly Matched Layer (PML) for the 2D
Helmholtz equation is introduced. The PML is an efficient method to suppress spurious
reflections at the boundaries of the computational domain, so that the Sommerfeld
radiation condition in unbounded medium is effectively achieved. The PML can be
formulated in the symmetric form, which has not been used with dispersion-minimizing
finite difference methods in the exploration geophysics community. We suggest a simple
symmetrization of the discretized matrix that can be used with a dispersion-minimizing
method. The symmetric discretization of the PML enables us to utilize the LDLT (LDLT)
decomposition with the Bunch-Kaufman pivoting, which considerably reduces not only
the number of arithmetic operations but also storage requirement for numerical
factorization of a sparse matrix, compared to the LU decomposition. Some numerical
experiments are shown to demonstrate the efficiency of the suggested scheme.

KEY WORDS: acoustic wave, Helmholtz equation, symmetric matrix, finite difference,
absorbing boundary, numerical dispersion minimization.
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INTRODUCTION

The acoustic wave equation has been widely used for many
engineering problems and also geophysical applications such as reverse time
migration (Baysal et al., 1983) and full waveform inversion (Tarantola, 1984).
Full waveform inversion has been performed by the time domain acoustic
wave equation (Tarantola, 1984) or the Helmholtz equation (Shin, 1988; Pratt
et al., 1998), which expresses time-harmonic wavefields of acoustic, elastic
and electromagnetic wave phenomena in the frequency domain. The
computational costs in such applications are typically large. Therefore, an
efficient numerical method is required.

Properly suppressing boundary reflections is one of the efficiency
factors. It gives a smaller size of the computational domain and the
subsequent reduction of the computational costs. The reflectionless boundary
condition can be effectively mimicked by using the Perfectly Matched Layer
(PML) technique (Bérenger, 1994, 2007). The PML has a great absorbing
ability without reflections at the boundaries regardless of incidence angles
(except for glancing angles, actually), therefore, the size of the truncated
domain is reduced.

The PML can be formulated equivalently in either symmetric or
nonsymmetric form, and the numerical factorization cost of the discretized
matrix may be different depending on the symmetricity of the PML. If the
PML is applied on the conventional second order finite difference scheme,
then the PML can be easily formulated in the symmetric form, which enables
us to discretize a Helmholtz problem as a symmetric indefinite system. It can
enjoy the LDLT decomposition with the Bunch-Kaufman pivoting (Bunch
and Kaufman, 1977), which reduces computational time and memory cost
compared to the LU decomposition. However, in the exploration geophysics
community, only the nonsymmetric PML has been used for most dispersion-
minimizing methods (Hustedt et al., 2004; Operto et al., 2007; Chen, 2014).
As a result, the general sparse LU decomposition has been employed to solve
the nonsymmetric matrix.

When dispersion-minimizing methods are employed, the resultant
discretized matrix may not be symmetric even if the form of the PML is
symmetric. We will show how to construct a symmetric matrix incorporating
the dispersion-minimizing property and the PML together.

METHODS
Symmetric PML

The Helmholtz equation, or second order acoustic wave equation in
the frequency domain is expressed as
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where v is the local acoustic wave speed, w is the angular frequency, p is
the pressure wavefield, and f is the source or forcing function of the system.
The spatial support of the source function f in many geophysical
applications is typically a Dirac delta function, which represents a seismic
point source like an air-gun array. Appropriate boundary conditions such as
free surface condition also should be imposed. In the following derivation of
the symmetric PML equation, the source f will be omitted without loss of
generality because sources are located only in non-PML region, where the
PML equation reduces to the ordinary Helmholtz equation [eq. (1)].

The PML can be implemented easily in the frequency domain by
using complex coordinate stretching interpretation (Chew and Weedon, 1994;
Sacks et al., 1995). Coordinate stretching by a complex-valued factor
introduces a damping effect acting only on wave components whose
propagation direction is parallel to each orthogonal coordinate axis. Each
coordinate is stretched by a factor of s,(x) =1+d.(x)/(tiw) or
s,(z) =1+ d,(z)/(iw). The sign of iw depends on the Fourier transform
convention. Damping strength d,(x) and d,(z) are zero in non-PML
region and gradually increase as the depth deepens into the PML region. The
profile of damping strength may vary like quadratic or cubic polynomials, but
more complicated profiles can also be used. The non-uniform coordinate
scaling (x,z) — (syx,5,z) can be systematically injected to eq. (1) by
applying a simple transformation rule

1 1
Oy = (;) Ox» d, - (g) d; - (2)

After applying the transformation rule and replacing w/v with a
wavenumber k to simplify the notation, eq. (1) is transformed to

—ktp (=), () op ~ ()0 () 2w = 0 G)

Sx Sx Sz Sz

As mentioned above, a source f is excluded in eq. (3). Eq. (3) is a
popular PML form used in the exploration geophysics communities, where
some dispersion-minimizing finite difference methods (Hustedt et al., 2004;
Operto et al., 2007; Chen, 2014) rely on eq. (3). The form of linear operator
in eq. (3) is nonsymmetric even prior to discretization. Multiplying eq. (3) by
SxS,, we easily obtain a symmetrized version of acoustic wave equation with
PML coefficients s, and s,

—k25.5,p — Oy (:—) 0, p — 0, (s—) a,p = 0. (4)
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The symmetrized equation [eq. (4)] was introduced at an early
development stage of the PML (Sacks et al., 1995; Turkel and Yefet, 1998),
but it has not been widely recognized in the exploration geophysics
communities. Although the operator of eq. (4) is not Hermitian/self-adjoint
(A" = A; the superscript H means the conjugate transpose.), it is symmetric
with complex coefficients (AT = A; the superscript T means the transpose.).
Thanks to the symmetry, computational efficiency directly comes from
replacement of the sparse LU decomposition with the sparse LDLT
decomposition with the Bunch-Kaufman 2 by 2 diagonal pivoting, which is
agle to factorize a complex symmetric indefinite matrix (Bunch and Kaufman,
1977).

Conventional Discretization with the Symmetric PML

Our starting point of the following discretization is eq. (4), whose
linear operator has a complex-valued symmetric indefinite form.
Discretization of the linear operator also results in a complex symmetric
indefinite matrix, so that the sparse LDLT decomposition with the Bunch-
Kaufman pivoting can be utilized.

We first define finite difference operators &, and 6, for first
derivatives in each coordinate direction

OxDoo = (Pm,o s P~1;2,0)/ Ax,
(5)
8.P00 = (Po,1/2 — Po,~1/2)/Az.

Grid intervals are denoted by Ax and Az. Subscripts denote positions
of nodal points relative to some reference coordinates (x,,2,) on discrete
grids, for example, poo = p(xp,2) and pyo = p(xo + Ax, 2,), etc. Half-
integer index like py /50 = p(xo +A4x/2,2,) indicates that it is defined at a
staggered position. By one more successive application of the finite
difference operators [eq. (5)], we may also form second derivatives

02p00 = (P10 — 2Po,0 + P-1,0)/0%%,

6
87po0 = (Po1 — 2Po,0 + Po,-1)/AZ>. (6)

If we follow a conventional 5-point stencil discretization of eq. (4)
using the finite difference operators, then the discretized equation becomes

_(kzsxsz)lo.(}po.o — by (Sz/sx)gxpo.ﬂ -0, (Sx/sz)62p0.0 = 0. (7)

By expanding the finite difference operators, eq. (7) is expressed as

—(k?sy5,)10,0P0,0 (8)
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- s, ~Poo) ~ 5 —Po-1) | =0.
Az2 (Sz 01/2 (Po1 — Poo) sillov 2 (Poo — Po-1)

Rearranging eq. (8) gives the following expression

1 s s
[ el +Ax2( Sx/ 12,0 * Sx
1 S s
Az Sz V0,172 S,
1 (SZ) 1 (52)
Ax? \s, P10~ 752 S

=) =)
Az? \s, Po1™ 252 S,

Eq. (9) can be implemented practically by defining only three
coefficients of  pgo, Po1 and p;o (depending on node ordering
convention) because of the symmetry. The upper triangular part of a matrix is
usually used as an input for direct sparse matrix solvers. The naive 5-point
method cannot be used in a high frequency w or high wavenumber k
region due to severe numerical dispersion, which should be reduced by
dispersion-minimizing methods. However, the discretization of the
symmetric PML may not yield a symmetric matrix when we incorporate a
dispersion-minimizing method. We suggest a simple method to preserve the
symmetry of the discretized matrix even if a dispersion-minimizing method is
employed.

—1;2,0)

)] Po,o
0,-1/2 9)

P-1,0
-1/2,0

1/2,0

Po-1 = 0.

0,1/2 0,-1/2

Dispersion-Minimizing Discretization with the Symmetric PML

In the context of exploration geophysics, most dispersion-minimizing
methods (Hustedt et al., 2004; Operto et al., 2007; Chen, 2014) are based on
Jo et al. (1996), which uses Marfurt’s (1984) idea of mass matrix and a
combination of two different spatial derivatives on the compact 9-point
stencil. We also use Jo et al.’s (1996) idea to minimize the dispersion from
the spatial discretization error.
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Jo et al. (1996) combines conventional 5-point Laplacian with 45-
degree rotated Laplacian to incorporate four additional diagonal nodal points

72p = aVigyp + (1 — a)Vi,5p, (10)

where Vfﬂ) and V%45) are discretized versions of the Laplacian. Jo et al.
(1996)'s combined Laplacian has a restriction of equal grid intervals
Ax = Az, which can be relaxed by using the following finite difference
operators

5§DP0,0—( . )(Pll —p11 +p11—pa 1),
20x 22 2z 272

. (11)
2900 = (g55) (a1 + P13 ~P11-p13).

While requiring more neighbor nodal points at staggered positions, eq.
(11) has the same second order of accuracy with the finite difference
operators of eq. (5). We can form a Laplacian using eq. (11) in non-PML
region (s, = s, = 1) as below

((62°)% + (82°)*)po, =
(p1,1 = 2pos +P-11 1 2P10 — 4Pop + 2P-10 + P1,-1 — 2P0,-1
+p1,-1)/(40x%) (12)
+(P11 + 2P0, + P-11 — 2P1,0 — 4Poo — 2P-1,0 ¥ P1-1 + 2P -1 +
P—l,—l)/(‘l'ﬂzz),

which has second order of accuracy
(82°)2 +(62°)° = @82 +.02 + 0 (Ax?,Az%): (13)

If h = Ax = Az, then eq. (12) is simplified to

((622)% + (62°)*)poo = (P11 + pléwl —4poo + P_11 +P-1,-1)/
(\/ﬁh) , (14)

which is equivalent to a Laplacian on 45-degree rotated grids as in Jo et al.
(1996)'s work. Thus, eq. (12) contains eq. (14) as a special case of Ax = Az.
Unlike (§22)? + (82P)2, the naive finite difference 82 + 82 on the rotated

grids (x',z") with unequal grid size Ax # Az actually does not give a
Laplacian as follows

82 + 8% = (2/(Ax? + Az?))(Ax?02 + Az202) + 0(Ax?,Az%).  (15)
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Similar to eq. (10), we blend two versions of generalized Laplacian
with the PML coefficients

S 5
2, (5) 9, +9, (g) 8, =
S, Sy
a (s (s) % 6z (s) s) (16)
+(1-a) (827 () 62° + 62° (%) 62°)

5
5.
which gives a symmetric discretization of the generalized Laplacian.

The averaging method is also used to replace the term pyo with a
combination of neighboring nodal points as follows

Poo = CPoo t d(PLo +P-10+Do1 Tt po,—1) +e(P11+P1-1+ P11 (17)
FPigq)

with a restriction of ¢ + 4d + 4e = 1, which means that the summation of
weighting coefficients of the neghibor nodes is unity. However, if the
averaging method is used as is, then it breaks the symmetry of the symmetric
PML. We need to average the term k2s,s,p as a whole with a caution to
keep the discretization symmetric in the form of

(kzsxsz)liipg‘j, (18)
22

where i = —1,0,1 and j = —1,0,1. Then, the averaging method and the
combined Laplacian [eq. (16)] are put together to form the symmetric
disretization

—c(k?5,5,)0,0P0,0

= ((kZSxSZ) I%}apl,ﬂ + (kzsxsz)l_%,np——l,o + (k23x52)|0%p0,1
#* (kZSsz)lo _lpl},—l)
2

= ((kzsxsz)|11p1,1 + (kzsxsz)ll_gpl,q + (kzsxsz)]_ilp—m (19)
22 22 272 :

+ (k25x53)|_1 _1]9—1.—1)
272

Sz Sx
—a (53: (g) 8y + 6, (Sz) 62) Po,o

S, 5
-(1-a) (639 (S—"’) 62D 4 52D (s—") 530) Do = O.

X Z
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Dispersion Analysis

Numerical dispersion characteristic of the symmetric PML equation is
equivalent to that of Jo et al. (1996)'s work, when Ax = Az. If the grid
interval Ax and Az are not the same, then the dispersion characteristic may
not be optimal with the weighting parameters given in Jo et al. (1996). To
analyze the effect of aspect ratio of grid intervals, we assume that the PML
coefficients s,, s, are unity and the medium is homogeneous (a constant
velocity value). Then eq. (19) with the weighting parameter e = 0 becomes

I (Cpo,u + d(PLu +P-10tPo1t+ Pn,—l))
_a(‘ﬁpo,o + 53?0,0) 21)
-(1- a)((aio)zpo,u + (5§D)2P0.0) =0.

The relation between a true wavenumber k and a numerical
wavenumber k,,,, can be computed by inserting an ansatz solution such as
Poo = exp(i(kyx + k,z)) and p;o = exp(i(k,(x + Ax) + k,z)) with
ky = kyum cos(8) and k, = k,,, sin(@), where 8 is a propagation angle
(from the x-axis) of a plane wave. If we express the finite difference
operators as a pseudo differential operator form like §, = 2sinh(Axd,/2) /
Ax, the finite difference operators in eq. (21) can be easily replaced with the
corresponding spatially Fourier-transformed expressions, for example,
8y — 2isin(k,Ax/2) /Ax as follows

—k?(c + 2d(cos(k,Ax) + cos(k,Az)))
4 kAx\ 4 . (kAz
+a ( sin? ( ) - sin? ( ))

Ax? 2 Az? 2
i (1-a) ( _ (kxﬂx - kz;ﬁ.Z) ek (kxﬂx + sz_\Z))z (22)
Ax? 2 2
(1—a); . (—k,Ax+k,Az (ko Dx + k,Az\\°
Az (5‘" ( 2 ) o ( 2 )) =

From eq. (22), we can compute a ratio of wavenumbers [or
equivalently, a ratio of velocities as in Marfurt (1984); Jo et al. (1996)]
Voum/V = k/kyum» Which is a function of k,,,, max(Ax,Az) = 2 /G, where
G is the number of grid points per wavelength in the direction of the largest
grid interval. 1/G should be defined by the largest grid interval
max(Ax,Az) to properly plot dispersion curves in the 1/G range from 0 to
0.25.
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Fig. 1. Normalized phase velocity. Closer to 1 is better. Fig. 1(a) shows that there are
slight phase lead and lag depending on the propagation direction but the error is bounded
within 0.5 percent in the plot range (1/G < 0.25). Figs. 1(b) and 1(c) show that the
unequal grid size is not helpful for improving the dispersion characteristic because of the
dominant error in the direction of the largest grid interval (4x in this case).
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Fig. 1 shows the improved dispersion curves along some propagation
angles and aspect ratios of grid intervals, compared to the naive second order
finite difference method [eq. (7)], which always has the phase lag (v ym/vV <
1) in every direction (see Jo et al., 1996). The error of the normalized phase
velocity is less than 0.5% for all aspect ratios with 1/G < 0.25. Thus, we
may use various unequal grid intervals simply with the optimized parameters
a,c and d that is computed when Ax = Az. Of course, the weighting
parameters can be further optimized for each aspect ratio as in Chen (2013),
although the parameters do not vary significantly along different aspect ratios.

Despite the flexibility of aspect ratio, there may be a reason not to use
unequal grid intervals Ax # Az. In Fig. 1(c), even if the grid interval in the z
direction (6 = 90°) decreases by a factor of 10 relative to Ax, the error in the
x direction (8 = 0°) does not decrease at all. In this situation, the dominant
error comes from the direction with the largest grid interval, so it invalidates
the error reduction of the smaller grid interval.

EXAMPLES
Computational Costs

A numerical experiment was conducted on a single 8-CPU node using
Parallel Direct Sparse Solver for Clusters included in Intel Math Kernel
Library (Kalinkin et al., 2014), which incorporates METIS (Karypis and
Kumar, 1998) as a fill-in reducing reordering method. If we consider a 2D
elliptic boundary value problem on a regular nxXn square mesh, METIS and
nested dissection ordering algorithms give the storage complexity
O(n*log(n)) and arithmetic operations O(n®) for sparse matrix
factorization (George, 1973). We solved a 2D Helmholtz problem in a nxn
grid. Four boundaries are set to the PML and a point source was located at
the center of the computational domain. Because the reordering process is
dependent only on the matrix connectivity, so it can be done independently
with the frequency and boundary conditions if the matrix connectivity
remains the same. Although symmetric and nonsymmetric cases have the
same form of computational complexity, symmetric one reduces the storage
requirement (54%) and arithmetic operations (57%) (Fig. 2), when we
compute ratios of asymptotic expressions O(n?log(n)) and 0(n3),
respectively. Computational time in Fig. 3 was obtained from averaging 10
numerical experiments and it shows that the LDLT decomposition using a
symmetric matrix is more efficient than the LU decomposition also in terms
of computational time.
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frequency spectrum contains up to about 15 Hz. We transformed the
frequency domain solutions to the time domain (Fig. 5) by the discrete
Fourier transform. In Fig. 5, analytic and numerical traces are matched quite
well.
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(a) Modeled wavefield at 1/G = 0.1 (b) Analytic wavefield corresponding to the
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(c) Modeled wavefield at 1/G = 0.25  (d) Analytic wavefield corresponding to the
corresponding to 15 Hz wavenumber of Fig. 4(c)

Fig. 4. Wavefields from a homogeneous medium (1.5 km/s) ina 5 X 5 km domain with
the grid interval of 0.025 km. The point source is located at the center of the domain. In
contrast to the analytic solutions [Figs. 4(b) and 4(d)], there are decaying wavefields near
the boundaries in the numerical solutions [Figs. 4(a) and 4(c)] because of the PML. From
the moderate frequency (1/G = 0.1) to the high frequency (1/G = 0.25), the numerical
solutions are matched well with the analytic solutions.
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Fig. 5. Comparison between analytic and modeled seismograms using a Ricker wavelet
with the peak frequency of 5 Hz (the maximum frequency is about 15 Hz) in a
homogeneous medium (1.5 km/s). The analytic and numerical solutions match well.
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Heterogeneous Velocity Model

The symmetric discretization was applied to the heterogeneous
velocity model called SEG/EAGE 3D salt (Aminzadeh et al., 1997). Except
the velocity model and the free surface boundary condition on the top of the
model, the rest of conditions are the same with the previous experiment of

analytic solution. Left, right ~pd. hattam houndariae avg cotgn the PML Grid | iins o
“* rmiliervars ox = oz are0.025 km the grid dimension (nx, n,) is (623, 1673

And a Ricker wavelet is used with the peak frequency of 5 Hz, and its
frequency spectrum contains up to about 15 Hz. We generated wavefields at
frequency 5 Hz [Fig. 6(b)] and 15 Hz [Fig. 6(c)] from a smoothed velocity
model of the original salt model [Fig. 6(a)] to avoid the staircase effect.
Seismograms [Figs. 7(a) and 7(b)] were also synthesized from the frequency
domain modeling with the nonsymmetric and symmetric discretization. The
results from both symmetric and nonsymmetric methods are qualitatively the
same. Although there is a slight amplitude difference in the PML region,
especially at 0 km distance, Fig. 7(c) shows there is no considerable
difference in the main computational domain. Table 1 shows the comparison
of the computational costs between the nonsymmetric and symmetric cases
for this test. Thus, we can tell the proposed symmetric discretization reduces
the computational costs significantly.

Table 1. Comparison of the computational costs for each frequency with the
SEG/EAGE salt model of the grid dimension (n,,n,) = (623,167). Arithmetic
count and the number of nonzeros are reduced by half, however the ratio of the
factorization time is somewhat larger than the ratio of the others. There may be an
overhead in the actual factorization procedure of the direct sparse matrix solver.

Symmetric Nonsymmetric Ratio
Arithmetic count 3.075215 5.383508 57.12%
(GigaFlop)
The number of 5004409 9241281 54.15%
NnonNzeros
Factorization  time 0.246417 0.363739 67.75%
(second)
CONCLUSIONS

A symmetrization procedure of the dispersion-minimizing method
with the PML for the Helmholtz equation was introduced. With the
symmetric formulation, the computational costs are reduced by half in terms
of the arithmetic count and memory requirement. To our best knowledge, the
symmetric form of the PML has not been widely used in the exploration
geophysics communities. Although we showed only 2D problems, which are
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not costly with the current computing power, the suggested scheme would be
more beneficial to applications such as 3D full waveform inversion and
reverse time migration in the frequency domain. The proposed approach will
be applied to the 3D Helmholtz equation in the near future.
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Fig. 6. The SEG/EAGE salt velocity model and wavefields with grid size of 0.025 km.
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(a) Seismogram from the nonsymmetric (b) Seismogram from the symmetric discretization
discretization

Distance (km)
10

Time (second)

(c) Difference between 7(a) and 7(b)

Fig. 7. Seismograms from both nonsymmetric and symmetric cases. The difference plot
7(c) in the same scale of 7(a) and 7(b) shows that there is no noticeable difference except
the PML domain at 0 km distance. Note that some signals appear before the direct arrivals,
because the wraparound effect was caused by the discrete Fourier transform with the finite

frequency interval 1/Tp.x. If Thax gets large enough, then the wraparound effect will
disappear, but it needs more computation.
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