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ABSTRACT

Ma, X., Li, Z., Xu, S., Ke, P. and Liang, G., 2017. Comparison of frequency-band
selection strategies for 2D time domain acoustic waveform inversion. Journal of Seismic
Exploration, 26: 499-519.

Full waveform inversion (FWI) is a promising model-building technology to recover
subsurface information. However, it is easy to fall into local minima when applying this
method because of the lack of a low-frequency component in seismic data. To mitigate
this problem, multi-scale method for the time domain has been proposed. With this
method, we perform the inversion sequentially from low- to high-frequency groups, and
we set the velocity model inverted at the previous scale as an initial velocity model for the
next higher frequency group. In this study, we mainly compare several frequency-band
selection strategies for FWI in time domain, including individual-grouping methods 1 and
2, along with Bunks’ method. To verify and compare the efficiency of the above three
methods, we introduce the partial-overlap and arbitrary-two grouping methods. Numerical
examples for synthetic data of the Marmousi velocity model, as well as noisy data,
demonstrate that multiscale inversion can attain encouraging resolution. Compared to
solutions from other methods, we highlight the individual-grouping method 2 which can
yield a more satisfactory velocity model. Also, numerical results imply that low
frequencies are necessary in full waveform inversion.

KEY WORDS: full waveform inversion, time-domain multiscale method,
frequency-band selection strategies
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INTRODUCTION

Full waveform inversion (FWI) as a method of building high-precision
subsurface structures has been studied for decades. Lailly (1983) and
Tarantola (1984) first proposed a back-propagation technique for waveform
inversion, and many evolved approaches to waveform inversion algorithms
have since appeared (Min et al., 2015). It can be implemented in the time
domain (Tarantola, 1984; Gauthier et al., 1986; Mora, 1987), frequency
domain (Pratt et al., 1998; Plessix, 2006; Shin and Min, 2006), or Laplace
domain (Shin and Cha, 2008; 2009).

In the frequency domain, FWI uses an implicit finite-difference
technique for frequency-space modeling. It is efficient to implement parallel
applications for a larger number of shots, but it imposes huge memory
requirements, making this method more applicable to 2D or smaller 3D
problems (Liu, 2015; Operto et al., 2007a). In the time domain, we can apply
higher-order finite- difference schemes for numerical simulations to maintain
high accuracy, and it occupies less memory, which is suitable for solving
large 3D problems. In general, FWI is always solved iteratively using local
optimization methods, such as the preconditioned conjugate-gradient method
and  limited-memory  Broyden-Fletcher-Goldfarb-Shanno  (L-BFGS)
optimization method, which gradually minimizes the waveform differences
between calculated and observed data (Virieux and Operto, 2009). Global
optimization methods have also been used to obtain the optimal solution, but
they are rarely applied to practical problems due to the huge calculation
burden.

Though FWI can theoretically construct well-resolved velocity
structures, there exists a critical problem. Since the relationship between
observed field data and model parameters is always strongly nonlinear, if the
starting model is far from the global minimum, the waveform inversion is
likely to get trapped into a local minimum (Gauthier et al., 1986). And
seismic data always lack low-frequency information, which will result in
seismic inversions with poor sensitivity to the long and intermediate
wavelengths (Symes, 2008; Ha and Shin, 2012).

Some efforts have been made in recent years to overcome the problem
of local minima. Early studies tried to linearize the relationship between
observed field data and model parameters (Tarantola, 1984; Berkhout, 1984),
but this method only works when the initial model is close to the true model
(Kim et al., 2010). Some researchers sought a better initial model for FWI by
employing traveltime tomography (Brenders and Pratt, 2007; Gao et al.,
2007; Biondi and Almomin, 2013) or migration velocity analysis (Symes,
2008). Other investigators have tried to use low-frequency components by
acquiring wide azimuth data (Ravaut, et al., 2004). As an efficient selection,
a multiscale waveform inversion method has been proposed, aiming toward
full waveform inversion in the time-domain (Bunks et al., 1995) and
successive inversion of single frequencies in the frequency domain (Pratt,
1999). So far, the multiscale methods have been applied widely in a full
waveform inversion scheme.
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As is well known, the multiscale approach is a natural benefit for
frequency-domain inversion, due to seismic data that have already been
decomposed into separate frequency components using the Fourier transform
(Brenders and Pratt, 2007). Sirgue (2004) presented a practical strategy of
selecting frequencies for frequency-domain inversion, which takes advantage
of wavenumber redundancy. Anagaw and Sacchi (2014) made comparisons
of six frequency selection strategies for FWI in frequency domain; and
proposed that partially overlapped groups of temporal frequencies can obtain
better resolution for the velocity models than the other methods. However,
for the time domain, all frequencies are inverted simultaneously, which
makes it easy to fall into local minima. To solve such a problem, Bunks
(1995) proposed the multigrid method that uses several frequency bands of
data and varying grid sizes to obtain satisfactory results in the time domain.
Seismic data and the source are low-pass filtered to different cutoff
frequencies of interest using Hamming-window function, but high-frequency
component leakage may exist. Boonyasiriwat et al. (2009) modified the
multi-grid method and proposed a new strategy for choosing optimal
frequency bands based on wavenumber continuity. At the same time, a
Wiener filtering function has proved efficient to filter the data. Liu (2015)
proposed a new frequency-band choosing strategy from the relation between
peak frequencies, and it is simple to calculate the frequency-band used in
FWI. Aiming to find a better multiscale strategy for FWI in the time domain,
we compare the different frequency selection strategies and provide
numerical examples in this study.

This paper is divided into five sections. After the introduction, we
describe the theory of full waveform inversion for the time domain, and we
present the Wiener window function for frequency-band filtering. Then we
study and compare frequency-band selection strategies in the time domain. In
the fourth section, we provide numerical examples using six different
strategies for the Marmousi model. We present our conclusions in the last
section.

REVIEW OF FULL WAVEFORM INVERSION IN TIME DOMAIN

The 2D acoustic wave equation is

2 2 >
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where p(x,7) represents the pressure field, v(x,7) is the acoustic velocity
(representing the model m) and s(x,f) is a source term. The time-domain
forward modeling of eq. (1) is solved by an explicit finite-difference scheme
with 12th-order accuracy in space and second-order accuracy in time. In the
forward modeling part, we apply the perfectly matched layer (PML)
condition at boundaries (Bérenger, 1994).
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In seismic inversion, the misfit function is usually constructed by a 4,
norm of residuals between field data and numerical data. So, the misfit
function can be written in the time domain as

2
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where p®(x,f) and p°®(x,?) are the calculated and observed data, respectively.
The primary purpose of FWI is to minimize misfit function (2), so that we
obtain the optimal velocity model. In this paper, we apply the L-BFGS
optimization method to minimize the misfit function (Nocedal and Wright,
2006). The gradient of the misfit function can be obtained by calculating the
partial derivative of eq. (2) with respect to the velocity model, which can be
expressed as the zero-lag value of the cross-correlations between the
forward-propagated wavefield and the back-propagated wavefield residuals
(Plessix, 2006 ):
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where T represents the maximum time record, and A represents the
back-propagated residual wavefield. It is obtained by back-propagating the
residual wavefield, which can be defined as

§pzzprm'(x,t)_pubs(x’t) . (4)
g

The model can be updated by using the relationship

mia =mitardr (3)

where my.; and my represent the (k+1)-#4 and k-#4 iteration model parameter,
respectively. The variable oy represents the step length, whose role can be
regarded as converting the units of the gradient vector to model dimensions
(Pratt, 1998). The step length is determined by the backtracking line search
method combined with the first Wolfe condition (Nocedal and Wright, 2006).
For FWI, the source wavelet is probably known or estimated with the initial
model before inversion (Shin and Cha, 2008, 2009).
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LOW-PASS FILTERING AND FREQUENCY-BAND SELECTION
STRATEGIES

In conventional waveform inversion in the time-domain, multiple
frequencies for a given broad bandwidth are inverted simultaneously, and
they usually fall into local minima. Now, with the multiscale method, FWI
can obtain encouraging results in the time domain. It needs to decompose the
seismic data into several frequency band groups, then perform sequentially
from low to high frequencies. Therefore, in this scheme, low-pass filtering
and frequency-band selection strategies are two essential factors to successful
multiscale inversion.

Low-pass filtering

There are many filter functions, such as Hamming, Wiener and
Blackman-Harris window functions. Compared to the Hamming-window
function, the Wiener and Blackman-Harris window functions have minimal
high-frequency component leakage (Boonyasiriwat et al., 2009). The Wiener
filter can be computed as

*

W, arger ( Ct)) w original
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where fiiener 1S the Wiener filter, Woigina the original wavelet, Wi is the
low-frequency target wavelet, ® is the angular frequency, € is a small
parameter that prevents numerical overflow, and * denotes the complex
conjugate. As illustrated in Fig. 1, Wiener filtering can obtain a wavelet with
a user-selected low-frequency band.
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Fig. 1. a) Original 28-Hz (black), 10-Hz (green), and 5-Hz (red) Ricker wavelet. b)
Amplitude spectrum corresponding to wavelet in a). ¢) 10-Hz (green) and 5-Hz (red)
Ricker wavelet low-pass filtered by Wiener filter from 28-Hz Ricker wavelet. d)
Amplitude spectrum corresponding to wavelet in ¢).
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To validate the efficiency of a filtering function on observed data, we
implement it on the synthetic seismograms generated with both 25-Hz
[Fig.2(a)] and 6.9-Hz [Fig. 2(c)] Ricker wavelets for a 2D model. We
transform the 25-Hz seismograms into 6.9-Hz seismograms [Fig. 2(b)] and
compare them with original seismograms simulated with a 6.9-Hz Ricker
wavelet [Fig. 2(c)]. For detailed comparisons, we also extract arbitrary traces
(Fig. 3) from seismograms in Fig. 2. By observation, we see that the Wiener
filter is efficient for filtering synthetic seismograms to obtain the low
frequency bands we are interested in. The minimal spectral leakage at the
beginning and end of traces, shown in Fig. 3, may be caused by truncation of
data.

a) Distance(km) b) Distance(km) c) Distance(km)
0 1 2 3

Time(s)

Fig. 2. a) Original unfiltered synthetic seismograms of 2D model generated from a 25-Hz
Ricker wavelet. b) Synthetic seismograms low-pass filtered by the Wiener filter to the
frequency band of a 6.9-Hz Ricker wavelet. ¢) Original synthetic seismograms of 2D
model generated from a 6.9-Hz Ricker wavelet.
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Fig. 3. a) Traces corresponding to Fig. 2 at a horizontal position of 0.8 km. b) Traces
corresponding to Fig. 2 at a horizontal position of 1.8 km.
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To test Wiener filtering in more realistic conditions, we contaminate
synthetic data (Fig. 2) with random noise with a signal-to-noise ratio (S/N) of
32 dB (Fig. 4). It can be seen that random noise will cause filtered results to
deviate from the original, especially at both ends of the data (Fig. 5).
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Fig. 4. a) Original unfiltered synthetic seismograms of 2D model generated from a 25-Hz
Ricker source wavelet, adding random noise, 32 dB. b) Synthetic seismograms low-pass
filtered by the Wiener filter to the frequency band of a 6.9-Hz Ricker wavelet. c¢) Original
synthetic seismograms of 2D model generated from a 6.9-Hz Ricker source wavelet,
adding random noise, 32 dB.
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Fig. 5. a) Traces corresponding to Fig. 4 at a horizontal position of 0.8 km. b) Traces
corresponding to Fig. 4 at a horizontal position of 1.8 km.
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Frequency-band selection strategies

Regarding the local-minima problem, Bunks (1995) proposed a
multigrid strategy that decomposed inversion into several scales, performed
sequentially over frequency groups in inversion, and repeatedly used low
frequencies at every stage. We usually begin by low-pass filtering data, and
then broaden the frequency ranges toward high frequencies. The velocity
model inverted at the previous scale is set as the initial model for next scale.
We can achieve greater computational efficiency at low frequencies by
computing numerical solutions of the wave equation using coarser grids and
larger time sampling intervals than at high frequencies. And no matter how
the sampling time d¢ and the grid dimensions dx and dz change, we must
maintain numerical stability. Fig. 6 shows the flow chart of multiscale full
waveform inversion using the frequency-band selection criterion.

We can achieve greater computational efficiency at low frequencies by
computing numerical solutions of the wave equation using coarser grids and
larger time sampling intervals than at high frequencies. And no matter how
the sampling time df and the grid dimensions dx and dz change, we must
maintain numerical stability. Fig. 6 shows the flow chart of multiscale full
waveform inversion using the frequency-band selection criterion.

Individual-grouping method 1

In the frequency domain, Sirgue (2004) proposed that each frequency
had a limited and finite band contribution to the image spectrum. For a given
frequency, the wavenumber coverage is limited to the range [KminAzmax]
where k;min and k,max are calculated as follows:

k:min = 47rfamin /CU 1
Fma=4nfcs ¥ T e R '

where Rmax = Ama/Z, hmax represents the maximum half offset, and z
represents the depth of target structure. When we select an inversion
frequency, we need to maintain wavenumber continuity, i.e.,

kztnin(f,;+1):kz|mx(f") 3 (8)

Therefore, we can obtain the inversion frequency by following the relation
(Fig. 7)

Is
fn+I:a 9)

min
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Fig. 6. Flowchart of multiscale full waveform inversion in time domain.
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Fig. 7. Strategy of selecting inversion frequency in frequency domain based on
wavenumber continuation.

In this paper, in the n-th frequency band, the minimum and maximum
frequencies of the band determine the wavenumber range, whose minimum
and maximum values are respectively defined as follows (Fig. 8):

k:min(n) — 47rfmin (”)amin

?

Co

47 () - (10)

zmax — +

Co

L

In a similar way to the frequency domain, we define
kzmin(n+l)=k21lwx(n) ; (11)

Therefore, we can obtain the following frequency relation between different
frequency bands:
) f max (n)

(n+1)= Lot
Juin (7 Y (12)

min
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Fig. 8. Strategy of selecting inversion frequency band in time domain based on
wavenumber continuation.

For the first scale, we set the frequency at half the maximum spectral
amplitude at the left end as the minimum frequency, and we set the frequency
at half the maximum spectral amplitude at the right end as the maximum
frequency. For the second scale, we use eq. (12) to calculate fi, (2), and
Joax(2) = fain(2) + foand, Where  foana represents the width of the
frequency-band. We use an analogous relationship for the next scale, so
wavenumber coverage is complete and continuous, with no overlap.

Individual-grouping method 2

Here, we present a new frequency-band choosing strategy, which is
determined as follows. We first confirm the peak frequency using the
equation:

fG-D=Bf()) (f =§,HSCG.{€) P (13)

where nscale represents the decomposed scale, f{nscale) represents the peak
frequency, and g is a coefficient with value range [0.2~0.3]. Then, with
respect to the first scale, we set the minimum frequency at half the maximum
spectral amplitude at the left end, and we set the maximum frequency at half
the maximum spectral amplitude at the right end.
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NUMERICAL EXAMPLES

In this section, we check the feasibility of the frequency-band selection
methods presented in this paper. As is well known, the Marmousi velocity
model (Fig. 9) has a complicated structure and a high-velocity layer at a
depth of about 1.5 km, and it is not easy to image the anticline structure
below the high-velocity layer (Kim, 2011).

In all experiments, we use two criteria to make the iteration process
terminate. The first one states that the iteration number must not exceed an
adequate maximum value at each stage. The second one states that the
inversion process will stop if the objective function value increases or the
relative change of the objective function value is less than a minimal value.
Besides that, the implementation algorithms of FWI are identical, except for
different frequency band selection strategies.

Marmousi velocity model

We resize the modified Marmousi velocity model to 361x142 samples,
with an interval of 12-m in each direction. The true velocity model is shown
in Fig. 9(a), and we create the initial velocity model by a linear function of
depth, as shown in Fig. 9(b). We create synthetic data using the time-domain,
finite-difference method, with 36 shots and 360 geophones, which are
distributed along the surface in the horizontal direction. The source signal is a
Ricker wavelet with a peak frequency of 22 Hz. Table 1 shows the frequency
bands we used in this test.

Table 1. Frequency band selection strategies for full waveform inversion (Marmousi
synthetic data).

Method Frequency band (Hz)
Individual-grouping method 2
0.48-1.65
2.89-9.80
10.60-36.00
Simultaneous method 0.00-66.00

The inversion result falls into a local minimum after 35 iterations, when
we use conventional FWI. Fig. 10(a) shows the conventional simultaneous
inversion result. There is a huge deviation between the inversion result and
the true mode, in both the shallow and deep parts. Fig. 10(b) shows the
difference between the true Marmousi model and the inverted velocity model.
The simultaneous inversion method performs very poorly for inverting the
velocity model, which yield local minimum solutions for the simultaneous
inversion.
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Fig. 9. a) Marmousi velocity model. b) The initial velocity model is created by a linear
function of depth.
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Fig. 10. a) Inversion results of the simultaneous method. b) Difference between true
Marmousi model and inverted model.

Then we make use of a multiscale method, setting the velocity model
obtained at the lower-frequency band as an initial model for the next
frequency band. Fig. 11 shows the inverted velocity model of the three
frequency bands from individual-grouping method 2; compared with the
conventional FWI, the inversion accuracy has been significantly improved. It
can be seen that by using the inversion process from lower frequency bands
to higher frequency bands in sequence, the structures and features are
recovered more and more accurately. The first scale inversion result shows
that it can recover long wavelength components of model parameters from
low-frequency information. Then, the second and third scales invert
structures and thin layers gradually, which correspond to the intermediate and
short-wavelength components.

For more detailed comparisons, we show depth-velocity profiles of the
true, initial and final inverted velocity models at horizontal positions of 0.66
km, 1.86 km, and 2.34 km, respectively, in Figs. 12(a), (b), and (c). The
inverted velocity profiles appear to show a trend that is similar to that of the
true velocity profile. Unfortunately, due to uneven spatial distribution of
seismic energy in the model, the deep region of the model is not
reconstructed as well as the shallow region.
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Fig. 11. a) Inverted velocity model of the first scale. b) Inverted velocity model of the
second scale. ¢) Inverted velocity model of the third scale. d) Difference between true
Marmousi model and final inverted velocity model.
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Fig. 12. a) Depth profiles of the real, initial, and final inverted velocities at a horizontal
position of 0.66 km. b) Depth profiles of the real, initial, and final inverted velocities at a
horizontal position of 1.86 km. ¢) Depth profiles of the real, initial, and final inverted
velocities at a horizontal position of 2.34 km.
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Marmousi velocity with random noise

To test our waveform inversion algorithm in more realistic conditions,
we added random noise to synthetic data. Fig. 13 shows a synthetic
seismogram contaminated with random noise with a signal-to-noise ratio
(S/N) of 32 dB. Table 2 shows the frequency bands using in inversion
calculated from different selection strategies.

a) Distance(km) b) Distance(km)

0.5 0.5-

E 1.5 1.5
-

2 >

25 25

3 3

Fig. 13. a) Synthetic seismograms from true Marmousi model. b) Synthetic seismograms
contaminated with noise, 32 dB.

Table 2. Frequency band selection strategies for full waveform inversion (Marmousi
synthetic data contaminated with noise, 32 dB).

Method Frequency band (Hz)

Individual-grouping method 1 0.00-3.00
4.84-7.84
12.65-36.00

Individual-grouping method 2 0.48-1.65
2.89-9.80
10.60-36.00

Bunks® Method 0.00-1.65
0.00-9.80
0.00-36.00

Partial-overlap grouping method 1.93-6.53
4.33-14.70
10.60-36.00

Arbitrary-two grouping method 2.418-8.17
10.60-36.00

Simultaneous method 0.00-66.00
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Fig. 14 depicts the final inverted velocity models from noisy data. In can
be seen that Bunks’ method, individual-grouping method 1 and individual-
grouping method 2 outperform the other methods in terms of resolution, and
that the frequency-band selection strategies enhance the feasibility for global
minimum solutions. However, the partial overlap grouping method,
arbitrary-two grouping method and simultaneous method are not suitable, as
they may fall into local minima. This can be confirmed by computing the
residuals between the true model and different inversion results. Fig. 15
depicts the absolute difference between the true Marmousi model and the
inverted velocity models in Fig. 14.
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Fig. 14. Inversion results from noisy data with S/N of 32 dB using: a) individual-grouping
method 1; b) individual-grouping method 2; c¢) Bunks’ method; d) partial-overlap
grouping method; e) arbitrary-two grouping method; f) simultaneous method.
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Fig. 15. Difference between true Marmousi model and final inverted velocity model in Fig.
14: the residual from the velocity model using a) individual-grouping method 1; b)
individual-grouping method 2; c) Bunks’ method; d) partial-overlap grouping method; e)
arbitrary-two grouping method; f) simultaneous method.

By calculating
[l
0=10log, | """

o~ m“2 |

we evaluate and compare the quality and robustness of the frequency band
selection strategies, where m, and m represent the true velocity model and
inverted velocity model, respectively (Anagaw and Sacchi, 2014). A high Q
value corresponds to a more accurate solution. The quality factors Q of
inverted models for the noisy data in Fig. 14 are shown in Table 3.
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Table 3. Quality of the inverted Marmousi velocity model (Q) for noisy data.

Method Total numbers of forward modeling
Individual-grouping method 1 8,10
Individual-grouping method 2 8,21
Bunks’ method 8,22
Partial-overlap grouping method 7,05
Arbitrary-two grouping method 7,09
Simultaneous method 5.47

Table 4 shows the total number of forward modeling simulations in the
process of full waveform inversion. Clearly, forward modeling numbers of
individual-grouping method 2 are less than those of other efficient methods,
which is the least time-consuming method for the high-resolution solution.
The above analysis demonstrates that if we use frequency-band selection
strategies of individual-grouping method 2 in waveform inversion,
satisfactory inverted results can be obtained at a lower computational cost. In
particular, we should start from the low frequency components in inversion.

Table 4. Total numbers of forward modelling simulations to achieve final result.

Method Total numbers of forward modeling
Individual-grouping method 1 9,720
Individual-grouping method 2 9,288
Bunks’ method 11,232
Partial-overlap grouping method 10,368
Arbitrary-two grouping method 6,048

Simultaneous method 3,456
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CONCLUSIONS

In full waveform inversion, seismic data are more linear in
low-frequency bands than in high-frequency bands. If waveform inversion
takes advantage of low frequency information, it tends to obtain solutions
close to the global minimum even if we start with an inappropriate initial
velocity model. Therefore, multiscale method as a feasible selection is
proposed to improve the resolution of velocity models.

In this paper, we have introduced three possible frequency-band
selection strategies. Individual-grouping method 1 is proposed based on the
theory of wavenumber continuity, as the calculated group frequencies have
little redundancy in wavenumber information. Individual-grouping method 2
makes use of the relationship between peak frequencies of different scales to
calculate the frequency band. Bunks’ method starts with low-pass filtered
data and then broadens the frequency bands to high frequencies, where the
lowest frequencies are fixed for all frequency groups. We examined the
effectiveness of the frequency-band selection strategies using tests on
Marmousi synthetic data and noisy data. Individual-grouping method 1,
Individual-grouping method 2, and Bunks’ method all can obtain more
satisfactory results than the conventional simultaneous-inversion method, and
individual-grouping method 2 performs better in terms of comprehensive
factors of resolution, quality and computational cost. The partial-overlap
grouping method did not start from zero frequency, and frequency bands had
a small amount of overlap, the terrible inversion result implies that low
frequencies are an integral part. We also used an arbitrary-two grouping
method, whose frequency band is obtained randomly, and inversion falls into
local minima.
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