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ABSTRACT

Zhou, Y., Li, S., Xie, J., Zhang, D. and Chen, Y., 2017. Sparse dictionary learning for seismic

noise attenuation using a fast orthogonal matching pursuit algorithm. Journal of Seismic Exploration,
26: 433-454.

Attenuation of random noise is a long-standing problem in seismic data processing. One of
the most widely used approaches is based on sparse transforms. In the geophysics community, most
of the currently used sparse transforms have fixed bases, which we call analytical transforms. In this
paper, we seek a different type of sparse transform, with variant bases, to attenuate random noise.
We call this type of transform dictionary learning-based (DLB) sparse transforms, because it can
adaptively train a sparse dictionary from the observed data to adapt to different seismic data. To
increase the efficiency of sparse dictionary learning, we propose to apply a fast orthogonal matching
pursuit (OMP) algorithm for sparse coding. We use both synthetic and field data examples to show
the superior performance of the dictionary learning-based transform over fixed-basis transforms, and
much improved efficiency in sparse coding associated with the fast OMP algorithm, which is one
of the two steps in the DLB transform.
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INTRODUCTION

Random noise attenuation plays an indispensable role in seismic data
processing. The useful signal that is mixed with the ambient random noise is
often neglected and thus may cause confusion between seismic events and
artifacts in the final migrated image. Enhancing the useful signal while
attenuating random noise can help reduce interpretation difficulties and risks for
oil & gas detection (Yang et al., 2014, 2015; Li et al., 2016a,b; Gan et al.,
2016e; Chen and Jin, 2015).

The widely used frequency-space prediction filtering (Canales, 1984a) can
achieve good results for linear events but may fail in handling complex or
hyperbolic events. A mean or median filter (Liu et al., 2009b; Chen et al.,
2015; Chen, 2015a; Gan et al., 2016d) is often used to attenuate specific types
of random noise, e.g., a mean filter is effective in attenuating Gaussian white
noise, and a median filter can remove random spikes with excellent
performance. An eigenimage based approach (Bekara and van der Baan, 2007),
sometimes referred to as global singular value decomposition (SVD), is effective
for horizontal-events in seismic profiles, but cannot be adapted to geologically
complicated structures. An enhanced version of this method turns global SVD
to local SVD (Bekara and van der Baan, 2007), where a dip steering process is
performed in each local processing window to enhance the locally coherent
events. The problem with local SVD is that only one slope component for each
processing window is allowed, and also the optimal size of each processing
window is often difficult to select. Structure-oriented SVD is designed
specifically for seismic data by applying the SVD filtering along the
morphological structure direction of seismic data (Gan et al., 2015a). Matrix
completion via f-x domain multichannel singular spectrum analysis (MSSA) can
handle complex dipping events well by extracting the first several
eigen-components after SVD for each frequency slice (Huang et al., 2016a,b,c:
Chen et al., 2016b,c; Xue et al., 2016a; Zhang et al., 2016a,b; Huang et al.,
2017). The f-x MSSA approach is based on a pre-defined rank of the seismic
data. The rank here denotes the number of linear components in the seismic
data. However, for complex seismic data, the rank is hard to select, and for
curved events, the rank tends to be high and thus will involve a serious
rank-mixing problem. Chen and Fomel (2015b) proposed a two-step processing
strategy to guarantee no coherent signal is lost in the removed noise.

Another common denoising approach is the three-step sparsity-promoting
transform based method (Liu et al., 2016a; Kong et al., 2016; Liu et al.,
2016e,c). The data are forward-transformed from time-space domain to the
transformed domain, and then a thresholding operator is applied in the transform
domain, followed by an inverse transform of the data back to the time-space
domain. Because of its superb performance and convenient implementation, it
has been one of the most popular methods (Wu et al., 2016; Zhong et al., 2016;
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Liu et al., 2016a; Kong et al., 2016). Sparsity-promoting transforms can be
generally divided into two categories (Chen et al., 2016a): a fixed basis
approach or a learning-based approach. A number of fixed basis
sparsity-promoting transforms are proposed in the literature for processing
seismic data including the Fourier transform (Duijndam et al., 1999;
Naghizadeh, 2012), the Radon transform (Yu et al., 2007; Wang et al., 2010;
Xue et al., 2016b, 2017), the curvelet transform (Shahidi et al., 2013; Zu et al.,
2016a,b; Liu et al., 2016d) and the seislet transform (Fomel and Liu, 2010;
Chen et al., 2014a; Chen, 2015b; Gan et al., 2015b, 2016c,a; Chen, 2016).
Wang et al. (2008) used the second- generation wavelet transform, which is
based on the lifting scheme, to denoise seismic data with a percentile
thresholding strategy. Hennenfent and Herrmann (2006) and Neelamani et al.
(2008) applied the curvelet transform to attenuate both random and coherent
noise in seismic data. Fomel and Liu (2010) designed a sparse seislet transform
that is tailored specifically for seismic data, including seismic denoising. Chen
and Fomel (2015a) used the adaptive separation properties of empirical mode
decomposition (EMD) (Huang et al., 1998; Chen et al., 2014b; Gan et al.,
2016b; Liu et al., 2016b,e) for preparing the stable input for the non-stationary
1D seislet transform and proposed a new EMD-seislet transform to denoise
seismic data with strong spatial heterogeneity. Recently, Kong and Peng (2015)
applied the shearlet transform to seismic random noise attenuation.

The learning-based approach utilizes machine learning techniques to infer
a dictionary (Chen, 2017). Instead of fixing the basis for the transform, the
basis is adaptively learned from the observed data. Thus, it can adapt to
different complicated seismic data. There are some initial results regarding the
dictionary-learning-based (DLB) transforms in the geophysics community but,
as it is a relatively new concept, these methods have not been widely tested and
investigated (Chen et al., 2016a). In this paper, we first introduce the
mathematics related to sparse dictionary learning, then apply the DLB approach
to random noise attenuation in seismic data. We demonstrate that the DLB
denoising approach can obtain much better performance than fixed-basis wavelet
and curvelet transforms. Considering that the DLB approaches are more
computationally expensive, we introduce a fast orthogonal matching pursuit
(OMP) algorithm to accelerate the sparse coding to reduce the computational
cost. Here, sparse coding refers to one of the key steps in DLB transform; the
other is dictionary updating. The numerical tests show that the fast OMP
algorithm can indeed significantly accelerate the DLB process.

THEORY
Sparse dictionary learning

Sparse representation via learning based dictionary consists of two main
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steps, namely sparse coding and dictionary updating.

®  Sparse coding. Given the observed data vector b, which can denote a 1D
seismic signal (e.g., a trace), sparse coding aims at solving the
optimization problem:

x" = argmin| b — A3, s.t. x|, < L, (1)

where |-||, and ||-||, denote the L, and L, norms of an input vector,
respectively. X" denotes the sparse coefficients after nth iterations. L is the
number of non-zero coefficients in x. A is the learned dictionary, with
each column in A denoting a basis and x is the sparse representation of
b in the sparse transformed domain of A. We will provide some
illustrations in the EXAMPLES section.

® Dictionary updating. For the obtained x", update A" such that
A™! = argmin|b — A™|? . (2)
A

Egs. (1) and (2) are iterated Niter times to learn the optimal dictionary
and the sparsest representation. The iterations terminate when Nizer is reached
or when convergence of the sparse dictionary is obtained, i.e., when further
iterations do not produce any significant change.

The multidimensional seismic data D is first reformulated into patch form
B. Each column vector in B is extracted from the multidimensional seismic data
matrix. For example, a 3 X 3 window in a 2D seismic data can be extracted
and reshaped as a 9 X 1 vector, which is stored as a column in B. Egs. (1) and
(2) then become

vx! = argmin"B — AX| 2 st x], =L, (3)
A" = argmin|B — AX"|? , (4)
A
where | - || denotes the Frobenius norm of an input matrix, x; denotes the i-th

column in X, or i-th sparse coefficient vector corresponding to the i-th column
in the data patch B.

Dictionary updating by K-SVD

We will first introduce the K-SVD method used for solving the dictionary
updating eq. (4). The dictionary update is performed one atom at a time
(Aharon et al., 2006). The objective function is minimized for each atom
individually while keep the other atoms fixed. Atom here denotes each column



SPARSE DICTIONARY LEARNING 437

in the dictionary matrix A. To achieve this, the update step uses only signals in
B whose sparse representations use the current atom. Letting J denote the
indices of the signals in B which uses the current atom. The update is obtained
by minimizing the following objective function

A = argmin| B, — AX, |2 , 5)
A

over both the atom and its associated coefficient row in X;. The resulting
problem is a simple rank-1 approximation problem expressed as

{a,c} = argmin||E — ac’||2, s.t. |a], =1 , (6)
a,c

where E = B; — L, .;a)X|; is the error matrix without the current atom (j), a is
the updated atom (a column in A), and x" is the new coefficients row in X,. s.t.
denotes subject to. ¢ denotes the coefficient row corresponding to a (or i-th row
in X)). X, simply denotes the i-th row in X but truncated by the indices vector
J. The problem can be solved directly via an SVD decomposition, or other more
efficient numerical algorithms. To make it clearer, when updating the i-th
column in dictionary A, after SVD the i-th row in X will also be modified. To
retain the sparse property of X, we need to restrict the modification to those
coefficients in the i-th row (of X) which are not zero. Those indices where
entries are not zero are denoted by J.

The algorithm workflow can be shown as
K-SVD ALGORITHM(B,A,,L,Niter)
1 A< A
2 for n< 1,2,...,Niter
3 do
4 vi:X; = arg rfnxifn“ d — Ax|3 st [[x], <L

5 forj<1,2,....,K

6 do
7 A <0
8 E < B, — AX,

9 {a,c} = argmin|E — ac’|2, s.t. [a], = 1
a,c
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10 A <a
11 X;;=c¢
12

13 return A
14 return A,X

In the algorithm above, K denotes the number of columns (atoms) in A
and the number of SVD calculations when updating A, it explains "K" in the
so-called "K-SVD" algorithm.

Sparse coding by OMP

The problem as expressed in (1) is an NP-hard problem, and directly
finding the truly optimal X is impossible and is usually solved by an
approximation pursuit method, such as the orthogonal matching pursuit (OMP)
algorithm. The greedy OMP algorithm selects, at each step, the atom with the
highest correlation to the current residual. Once the atoms are selected, the
signal is orthogonally projected to the span of the selected atoms. Then, the
residual and the process are repeated. The output of the sparse coding procedure
is the sparse coefficient vector, as shown in eq. (1), or each column in the

sparse coefficient matrix, as shown in eq. (3). The algorithm workflow of OMP
is as follows

ORTHOGONAL MATCHING PURSUIT (A,b,L)
1 Setl< ()
2 r<b
3 x<0

4 forit< 1,2,....L

5 do

6 k< argmax|alr|
k

7 1< Lk

8 x; < (AD'b
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9 r<b — Ax

10 return x

where (A)" = (ATA)'Al. In the above algorithm, I denotes the vector of
indices corresponding to the non-zero entries in vector Xx. a, denotes the
transpose of the k-th column in dictionary A.

Sparse coding by fast OMP

In the greedy OMP algorithm, the computation x; = (A))'b requires the
inversion of matrix AJA;,, which remains non-singular due to the
orthogonalization process which ensures the selection of linearly independent
atoms. The matrix AA, is a symmetric positive-definite matrix and is updated
every iteration by simply appending a single row or column to it, and therefore

its Cholesky factorization requires only the computation of its last row
(Rubinstein et al., 2008).

It can be proven that if A and A have the following relation:
A= , (7

where ¢ is a constant, v is an arbitrary column vector, then the Choleskey
. factorization of A can be expressed as

A =1LL" | (8)

L 0
L = ) ©)
wh Jc—w'w)

w=L7v , (10)

where L is the triangular matrix from the Choleskey factorization of A = LL.
This method for inverting the matrix ATA is called the progressive Cholesky
factorization method.

When large numbers of signals must be coded over the same dictionary,
it is worthwhile to consider pre-computation of the Choleskey factorization to
reduce the total amount of work involved in coding the entire set. It is obvious
that the atom selection step at each iteration does not require knowing r and x



440 ZHOU, LI, XIE, ZHANG & CHEN

explicitly, but only A'r. So we can reduce the computational cost by replacing
the explicit computation of r and its multiplication by AT with a lower-cost
computation of A'r.

The r can be removed from the equations by simple derivation as follows:

a = A'ld - A(A)'d]

o’ — Gy(A)'d

a® — Gy(ATA) 'ATd

= Olo - GI(G“)_IOZ? 5 (11)
where « = A'r, o = A'x, and G = ATA. Eq. (11) means that we can
compute « each iteration instead of explicitly computing r. The computational
cost can be greatly reduced by multiplication with G, instead of AT. The matrix
G, can also be inverted using the progressive Cholesky factorization method.

The matrix Gy indicates that the columns and rows of G are both restricted by
the vector I of indices. The complete fast OMP algorithm is as follows:

FAST ORTHOGONAL MATCHING PURSUIT(a’,G,L)
1 Setl< ()

2 L < [1]

5 forit<1.2,....L

6 do

7 l%e—argmflx|ozk|
8 ifit > 1

9 then

10 w < Solution to {Lw = G}
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L 0
11 L=<
wl J(1—w'w)
12
13 I< Lk

14 x; < Solution to {LL"¢ = o}
15 B« Gx

16 a<ao® -

17 return x

The w in the above algorithm is detailed in egs. (9) and (10).

EXAMPLES

In this section, we will use both synthetic and field data examples to
demonstrate the performance of the DLB denoising method. For measuring the
denoising performance of synthetic data examples, where one knows the clean
data, we use the signal-to-noise ratio (SNR) (Liu et al., 2009a; Huang et al.,
2015, 2016a) measurement and the formula is expressed as follows:

SNR = 1010%10 " Xlrue ”% /” X - )A(

true

2, (12)
where x,,. denotes the clean data and % denotes the denoised data.

The first example (Fig. 1) contains three hyperbolic events, all of which
are considered to be useful signals. Because of the high curvature of the first
hyperbolic event, and the crossing of first and second events, it is difficult to
denoise for many traditional methods. The spatially incoherent components are
the random noise, which should be rejected before subsequent seismic data
process procedures, e.g., such as migration, velocity analysis, and
amplitude-versus-offset (AVO) inversion. The criterion to judge the denoising
performance is to maximize the noise removal while minimizing the signal
damage. Figs. 2a and 2b show the denoised results using a wavelet transform
and a curvelet transform, respectively. It is obvious that both methods cause
more or less damage to the useful events, and the curvelet thresholding is
generally more effective than wavelet transform in preserving more signals and
removing more noise. Figs. 2c and 2d show the denoised results using the
learned sparse dictionary via traditional OMP and fast OMP. Note that Figs. 2c
and 2d are exactly the same while the computing time for the traditional OMP
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is 81.74 seconds and for the fast OMP is 33.26 seconds. We show the same
results to confirm the correctness of the fast OMP algorithm. Fig. 3 show the
removed noise sections corresponding to the four denoised results as shown in
Fig. 2. The SNRs of the noisy data, wavelet denoised data, curvelet denoised
data, and sparse dictionary denoised data are —5.18 dB, —0.1837 dB, 1.171
dB, and 1.23 dB, respectively, which confirms the best performance using the
DLB method. In this example, since the hyperbolic events are deemed to be
signals, both the wavelet and curvelet methods tend to damage a large portion
of the signals. When the first hyperbolic event is considered to be coherent
noise, the performance of both wavelet and curvelet methods is better than the
DLB approach. However, the DLB transform can also be used to remove
coherent noise, but with special treatment of the dictionaries, as introduced in
Kaplan et al. (2009).

To better explain the DLB algorithm, and correlate the numerical
experiments with the theory. We plot the key matrices that are introduced
above. Fig. 4 shows the dictionary matrices A in egs. (3) and (4) before and
after dictionary training. The size of the matrix is 64 X 256, since we use a
8 X8 patch size and 256 dictionary atoms, which means that each 8 X 8 window
is extracted from the seismic data and reformulated into a 1D column. It can be

Trace Trace

1.5

(a) (b)

Fig. 1. (a) Clean data. (b) Noisy data.
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Time (s)

Time (s)

Fig. 2. (a) Denoised data using wavelet thresholding. (b) Denoised data using curvelet thresholding.
(c) Denoised data using DLB transform via traditional OMP algorithm. (d) Denoised data using
dictionary DLB via fast OMP algorithm.
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(c) (d)

Fig. 3. Removed noise using (a) wavelet thresholding, (b) curvelet thresholding, (c) DLB transform
via a traditional OMP algorithm, (d) DLB transform via a fast OMP algorithm.
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Fig. 5. (a) Reshaped dictionary (with each atom reshaped into a 8 X 8 matrix) of the discrete cosine
transform (DCT). (b) Reshaped dictionary (with each atom reshaped into a 8 X 8 matrix) of the
DLB transform, each square contains a 2D basis of the DLB transform.
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observed that dictionary matrix before training is simple while the dictionary
after training is very complicated. The initial dictionary is also called the
discrete cosine transform (DCT). To better view the 2D representation of each
dictionary atom, we can reshape each column of A into a 8 X 8 matrix and plot
all the reshaped 2D atoms together. Fig. 5 shows the reshaped dictionary before
and after dictionary learning; the dictionary after training better represents the
seismic event than that before training. It also demonstrates that the basis in the
DLB transform best matches the local structures of the seismic events and
explains why the DLB based method can obtain a better separation between
signal and random noise. Fig. 6 shows the matrices B and X as expressed in
egs. (3) and (4). Since two neighbor patches (8 X 8 windows) have a 7-point
overlap, and the data size of the hyperbolic-events example is 501 X 76, the
size of B is 64 X 34086 and the size of X is 256 X 34086. The matrix B is
noisy and the matrix X is very sparse. Fig. 7 shows the reconstructed data
patches, B = AX, where * denotes estimated matrix. Fig. 7 is much cleaner
than Fig. 6a, as a consequence of removal of the random noise.

We further test the effectiveness of the DLB sparse transform in denoising
a complicated field data example. The field data are shown in Fig. 8. In this
example, we also compare the results of sparse transform based methods with
those from the f-x predictive filtering method (Canales, 1984b; Chen and Ma,
2014), wavelet transform filtering, and curvelet transform filtering (Fig. 9). Fig.
10 show their corresponding noise sections. To compare fairly, the results
shown in Figs. 9 and 10 are all the best results that can be obtained by each of
the individual methods. We try to minimize signal damage in the noise section
to make each result acceptable, while judging the performance via the noise
level in the difference section. From both the denoised results and the removed
noise sections, it is clearly observed that while the wavelet and curvelet
transforms fail to remove a large amount of noise, the DLB removes most of
noise without damaging the useful energy. The f-x predictive filtering method
removes more noise, but also causes some damage to the signals and so is
thought to be the least effective method.

CONCLUSION

A sparse DLB denoising approach is relatively new to seismic data
processing. We have introduced in detail the mathematical background of the
methodology, and a fast orthogonal matching pursuit (OMP) algorithm to
accelerate the sparse coding process, which is one of the two key steps in sparse
dictionary learning. Both synthetic and field data examples show that the DLB
sparse transform obtains obviously better performance in attenuating random
noise, even when the data structure is very complicated. Numerical tests also

confirm the computational speedup obtained using the proposed fast OMP
algorithm.
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Fig. 8. Field data example.



450 ZHOU, LI, XIE, ZHANG & CHEN

ol 13 i
200 250 300 350 400 450 500
Trace

(b)

Time (s)

50 100 150 200 250 300

50 100 150 200 250 300 350 400 450
Trace Trace

(c) (d)

Fig. 9. Denoised data using (a) wavelet thresholding, (b) curvelet thresholding, (c) f-x predictive
filtering, and the DLB transform via the fast OMP algorithm.
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