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ABSTRACT

Chen, W., Chen, Y. and Cheng, Z., 2017. Seismic time-frequency analysis using an improved
empirical mode decomposition algorithm. Journal of Seismic Exploration, 26: 367-380.

Among the time-frequency analysis approaches, the EMD-based approaches have been
proven to show higher spectral-spatial resolution than the traditional approaches. However, the mode
mixing problem always exists in these approaches which will affect the subsequent interpretation
performance. In this paper, we apply a novel improved complete ensemble empirical mode
decomposition (ICEEMD) technique to time-frequency analysis of seismic data. The ICEEMD
approach can help decompose a 1D non-stationary signal into intrinsic mode functions with less noise
and more physical meaning, and result in a higher frequency resolution in the time-frequency maps.
The application of the algorithm to 1D seismic signal can help obtain a more meaningful analysis
regarding the non-stationary components. Its application to 2D and 3D seismic data has the potential
to enable a better geological and geophysical interpretation. We use a 1D real seismic trace, a 2D
seismic section and a 3D seismic cube to show the superior performance of the proposed approach.

KEY WORDS: Empirical Mode Decomposition (EMD), time-frequency analysis, seismic data,
Improved Complete Ensemble Empirical Mode Decomposition (ICEEMD),
subsurface characterization.
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INTRODUCTION

Time-frequency analysis is an important step in seismic data processing
and interpretation. It can help characterize the non-stationary relation between
time and frequency embedded in the seismic data and can reveal important
details of seismic data providing valuable information for reservoir
characterization (Zhang et al., 2016; Zhong et al., 2016; Liu et al., 2016a; Wu
et al., 2016b). Because of the higher demand in precisely characterizing hydro-
carbon reservoirs, more and more difficult situations when exploring oil and gas
traps, the requirement for a high-resolution time-frequency analysis technique
that is even robust in the case of low signal-to-noise ratio (SNR) (Cai et al.,
2011; Lin et al., 2015; Kong et al., 2016; Sun and Wang, 2016; Wu et al.,
2016a; Huang et al., 2016) becomes highly attractive.

Short-time Fourier transform (STFT) (Allen, 1977) applied the Fourier
transform to an 1D signal over a local time window in order to generate a
localized time-frequency map. The fixed window size used in STFT makes it
difficult to obtain an appropriate delineation for different frequency components
which limits its wide usage (Chakraborty and Okaya, 1995; Cohen, 1995; Sun
et al., 2002). Wavelet-based methods are then developed for seismic
time-frequency analysis in order to obtain superior spectral resolution. Sinha et
al. (2005) developed the time-frequency continuous wavelet transform (TFCWT)
which maps the time-scale plane into a time-frequency map directly and obtains
a time-frequency map more accurately than the continuous wavelet transform.
The S transform was proposed by Stockwell et al. (1996) as an extension to the
Morlet wavelet transform. Instead of a fixed time length for each frequency in
the window functions chosen for STFT, the S transform analyzes shorter data
segments as the frequency becomes higher.

Wigner-Ville distribution (WVD) (Jeffrey and William, 1999; Wu and
Liu, 2010) is an important member of the Cohens class time-frequency
distribution. It possesses superior time-frequency resolution due to the absence
of a window in calculating the time-frequency representation. However, WVD
is also limited in a lot of applications because of its cross-term interference and
its loss of phase information. Matching pursuit (MP) (Mallat and Zhang, 1993;
Wang, 2007; Zhang et al., 2010) is another time-frequency analysis method
which decomposes a seismic trace into a series of wavelets that belong to a
comprehensive dictionary of functions. The MP method can obtain high
resolution when applied to analyze seismic signals but it will cause a heavy
computational burden. Besides, the atom library used in the MP method must
be carefully chosen. The synchrosqueezing transform (SST) (Daubechies et al.,
2011; Herrer et al., 2014; Liu et al., 2016d) is a newly developed method for
obtaining high resolution in the time-frequency map. It was originally introduced
in the context of audio signal analysis (Daubechies and Maes, 1996). The
principle of SST is to reassign frequency components by synchrosqueezing along
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the frequency axis of the time-frequency representation from a traditional
wavelet transform. SST has been applied to seismic data analysis (Chen et al.,
2014a; Herrer et al., 2014; Wang et al., 2014; Xie et al., 2015) and has
obtained significantly higher time-frequency resolution than wavelet-based
methods.

The empirical mode decomposition (EMD) (Huang et al., 1998; Chen et
al., 2014b; Han and van der Baan, 2015; Gan et al., 2016; Chen, 2016; Chen
et al., 2017a,b) decomposes a non-stationary signal into different locally
stationary components, in a local and fully data-driven manner. In spite of its
considerable success, EMD still lacks a solid mathematical foundation and is
computationally expensive. In the EMD-based time-frequency analysis approach,
the instantaneous frequency attribute is then extracted from each decomposed
signal component and then mapped to a 2D time-frequency map. The
EMD-based time-frequency analysis approaches are demonstrated to have a
much higher resolution than the traditional techniques and thus have been widely
investigated in the exploration geophysics community. However, the
performance of the EMD-based time-frequency analysis approaches highly
depends on the separability of different oscillating components. While the
mode-mixing problem exists, the performance of the final time-frequency
delineation will be negatively affected. Many noise-assisted versions of EMD
approaches have been proposed to alleviate the mode-mixing phenomenon, such
as ensemble empirical mode decomposition (EEMD) and complete ensemble
empirical mode decomposition (CEEMD). The CEEMD recovered the
completeness property of EMD (achieving a negligible reconstruction error),
with guaranteed positive and smoothly varying instantaneous frequencies (Han
and van der Baan, 2013). However, there are still two drawbacks of CEEMD
that deserve an improvement: (1) the decomposed modes contain some residual
noise and (2) there are spurious modes in the early stages of CEEMD. The
improved complete ensemble empirical mode decomposition (ICEEMD)
algorithm was proposed to solve such two problems. The decomposed
components using ICEEMD are with less noise and have more physical
meanings (Colominas et al., 2014; Chen et al., 2016).

In this paper, we propose an improved time-frequency analysis approach
for analyzing seismic data based on the recently developed ICEEMD algorithm.
The outline of the paper is summarized as follows. First, we briefly review the
traditional EMD-based algorithms and their limitations. Secondly, we introduce
the ICEEMD algorithm and the way we can utilize it for seismic time-frequency
analysis. Then, we provide several field seismic data examples, in 1D, 2D, and
3D, to show the great potential of the ICEEMD algorithm in probing the
subsurface properties and compare the ICEEMD-based performance with the
CEEMD-based performance. Finally, some conclusions are drawn at the end of
the paper. It is worth mentioning that it is the first time that the ICEEMD
algorithm is applied on multidimensional seismic data and is analyzed from the
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geoscience point of view since its publication in 2014. The novelty of this paper
is not on the algorithmic side, instead, we will focus more on the geophysical
applications.

THEORY
EMD, EEMD, and CEEMD

EMD is an adaptive decomposition method for breaking down a
non-stationary signal into a set of locally stationary signals. Given a
non-stationary input signal, a set of decomposed signals can be obtained via
recursively implementing the sifting algorithm:

1. Find the local maxima and minima of the signal.

2. Fit the maxima and minima by cubic spline interpolation in order to
generate the upper and lower envelopes.

3. Compute the mean of the upper and lower envelopes and subtract it from
the signal.

4. Repeat steps 1-3 until the residual meets the condition of a intrinsic mode
function (IMF):

e the number of extrema and the number of zero crossings cannot differ
more than one,

* the mean value of the upper envelope and lower envelope is zero.

5. Subtract the residual signal obtained from step 3 from the original signal
and continue to get other IMFs by recursively doing steps 1 to 3.

EMD has found a great number of applications in different fields of signal
analysis. However, when a high-resolution depiction of frequency components
is required, EMD cannot obtain successful performance. It is mainly because of
the mode-mixing problem of EMD. The mode-mixing problem is defined as the
phenomenon in which the IMFs are composed of frequencies of dramatically
disparate scales (Kopecky, 2010).

Ensemble empirical mode decomposition (EEMD) was then developed to
overcome the mode-mixing problem (Wu and Huang, 2009). In EEMD, several
simple modifications are added into the implementation of traditional EMD: (1)
a certain percentage of Gaussian white noise is added onto the observed signal
and the new signal is decomposed into IMFs via EMD; (2) decompose a noisy
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signal with different added Gaussian white noise into IMFs; (3) obtain an
ensemble average of the corresponding individual IMFs as the final output IMFs
of EEMD. However, because of the added white noise, the reconstruction of
original signal after EEMD might not be optimal though the mode-mixing
problem is greatly improved.

Complete ensemble empirical mode decomposition (CEEMD) is also a
noise-assisted method. The CEEMD technique aims at simultaneously solving
the mode mixing problem and maintaining the reconstruction performance by
adding appropriate white noise in each stage of sifting process so that the
residual signal for computing the following IMFs is unique (Liu et al., 2016b).

Improved complete ensemble empirical mode decomposition algorithm

Though the mode-mixing problem is greatly solved by the EEMD and
CEEMD techniques, and the high reconstruction error issue of EEMD can be
handled by CEEMD, the CEEMD technique may cause spurious modes that
contain a significant amount of residual noise and lack a plausible physical
interpretation of each mode. The improved complete ensemble empirical mode
decomposition (ICEEMD) technique is recently developed to obtain IMFs with
less noise and has more physical meanings.

The k-th IMF IMFk in CEEMD can be expressed as

1
IMF, = (/D) ), E\[r,_, + &_.E,_,(W)] . (1)
i=1

where r, denotes the residue after the k-th iteration: r, = r,_, — IMF,. When
k = 0, r, = x. E, denotes the EMD process to get the k-th component. When
k = 0, there is no decomposition. w' denotes the i-th Gaussian white noise
realization process. ¢, is a parameter chosen to obtain a desired SNR of residue.
Detailed studies on the influence of ¢, can be found in Colominas et al. (2012).

In a similar way, but introducing a local mean extraction operator M, the
k-th IMF can be expressed as

IMFk = I'k_l - I'k . (2)

when k = 1, r, = x. The k-th residue can be obtained by

I
o= (/) ), Mlr,_, + &_ E,w)] . 3)
i=1
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The CEEMD estimates the local mean of residue and subtracts it from the
averaged residue. However, ICEEMD estimates the local mean and subtracts it
from the original signal. In this way, we obtain a reduction in the amount of
noise present in the modes. In addition, in order to reduce this scale overlapping
that causes the spurious modes, ICEEMD proposes to make no direct use of
white noise but use E,[w(i)] instead to extract the k-th mode.

The instantaneous amplitude R(t) and frequency F(t) for each IMF can be
calculated as

R(t) = V{xX*() + y*(} , )
4)
Ft) = (12m)[x®y'(1) — x'OQyOV[x*®) + y* 1] ,

where y(t) is the Hilbert transform of x(t). Note that the R(t) and F(t) are then
mapped to a time-frequency map, followed by convolution with a 2D Gaussian
filter, to output the final time-frequency characterization of a given signal.

FIELD DATA EXAMPLES

The first example is a real single-trace seismic data. Fig. 1 shows the
data. Fig. 2 shows the time-frequency decomposition performance using four
different approaches. The time-frequency decomposition results using EMD,
EEMD, CEEMD, and ICEEMD, are shown in Figs. 2a, 2b, 2c¢, and 2d,
respectively. The general performance using the four different approaches are
very similar, but detailed comparisons can help us find out some differences that
will affect greatly the final interpretation results. Focus on the two areas that are

1D seismic signal
5 . . . .

Amplitude
o

=0 0.1 0.2 0.3 0.4 0.5
Time (s)

Fig. 1. Real single seismic trace.
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emphasized by the green and red frame boxes in Fig. 2. It can be seen that there
are three narrow frequency slices in the time-frequency maps shown in each
figure in Fig. 2. One is about 45 Hz, one is about 25 Hz, and another one is
about 10 Hz. By extracting these three frequency slices from each trace of a 2D
or 3D datasets, we can extract significant geological structures or phenomenon
from the original seismic profiles, which will facilitate a better decision making
in oil & gas production. Because of the most serious mode-mixing problem of
EMD, the frequency components in both the green and red boxes are mixing
with each other, which will cause a discontinuity or smearing in the finally
extracted spectrum-attribute profiles, as introduced above. The EEMD obtains
a much better frequency resolution in the green box area by well separating the

EEMD

Frequency (Hz)
Frequency (Hz)

ICEEMD

Frequency (Hz)

0.2 0.3
Time (s)

(c) (d)

Fig. 2. Time-frequency decomposition performance of (a) EMD, (b) EEMD, (¢) CEEMD,
(d) ICEEMD.
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two frequency slices but still causes a mixed spectrum in the red box area. The
time-frequency spectrum from both CEEMD and ICEEMD approaches obtain
an obviously better representation in both green and red boxes. There are no
mode mixings in the red boxes for both CEEMD and ICEEMD. However, the
CEEMD causes two spectrum crossing points (0.1 s and 0.2 s), and the
delineation of the frequency slices is not very clear. The ICEEMD, instead,
causes no mode mixing and obtains a better frequency representation with higher
resolution.

A post-stack seismic section is also used to show the performance of the
ICEEMD-based approach in delineating structural and stratigraphic features of
the seismic data. Fig. 3a shows a 2D post-stack seismic data that was once used
in Fomel (2013); Chen et al. (2014a); Chen and Fomel (2015); Liu et al.
(2016¢); Chen and Jin (2016). We first apply the CEEMD- and ICEEMD-based
time-frequency analysis approaches to all the traces and then select a constant
frequency for all the traces to form a separated frequency profile. From the
constant frequency slice, we can understand the subsurface structures better.
Figs. 3b and 3c show the 30 Hz sections using CEEMD and ICEEMD,
respectively. It is clear that the ICEEMD-based approach obtains a much clearer
delineation of the main geological features, like the discontinuities. The 50 Hz
frequency sections using the two approaches are shown in Figs. 3d and 3e. The
performance of ICEEMD is also better than the CEEMD-based approach. From
the 50 Hz section using ICEEMD, we can obtain a better delineation of the
strata with a potential thin-beds phenomenon. Comparing the low-frequency and
the high-frequency slices, we can obtain more abundant information from the
section, such as the features indicating the potential reservoirs. The depicted
results using the [CEEMD-based approach are consistent with the results from
Fomel (2013) and Chen et al. (2014a) in obtaining similar potential reservoir
spots but with a higher resolution. The potential discontinuities that indicate the
existence of faults are also found in Chen et al. (2014a) and that confirm the
previous discovery but are not found in Fomel (2013). The main reason of its
absence in Fomel (2013) is that the method proposed in Fomel (2013), though
more controllable due to its explicit signal decomposition mechanism, is of
much lower resolution compared with the ICEEMD-based approach in this
paper and the SST-based approach in Chen et al. (2014a). This observation
indicates that higher resolution may facilitate a better depiction of both structural
anomaly and low-frequency shadow. The thin beds are not found in both Fomel
(2013) and Chen et al. (2014a), which indicates that the ICEEMD-based
time-frequency analysis approach may have a even higher resolution than the
SST-based approach that is used in Chen et al. (2014a).

We also apply the proposed ICEEMD-based time-frequency approach to
the 3D data volume. It is flattened using the plane wave painting approach
(Fomel, 2010). The field data is from the Gulf of Mexico (Lomask et al., 2006)
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Fig. 3. Time-frequency delineation performance of a real 2D seismic data. (a) Amplitude section.
(b) CEEMD (30 Hz). (c) ICEEMD (30 Hz). (d) CEEMD (50 Hz). (¢) ICEEMD (50 Hz).
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Amplitude
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Fig. 4. Time-frequency delineation performance of a real 3D seismic volume. (a) Constant time

slice. (b) CEEMD (30 Hz). (c) ICEEMD (30 Hz). (d) CEEMD (60 Hz). (¢) ICEEMD (60 Hz). Note
the highlighted paleochannels as pointed out by the arrows.
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and was previously used in Liu et al. (2011). The constant time slice is shown
in Fig. 4a. From the amplitude slice, there is no obvious channel. However,
after extracting different frequency slices we can observe encouraging geological
phenomena, especially for the paleochannels. Figs. 4b and 4d show the 30 Hz
and 60 Hz frequency slices corresponding to the amplitude slice using the
traditional CEEMD-based approach. Figs. 4c and 4e show the 30 Hz and 60 Hz
frequency slices corresponding to the amplitude slice using the proposed
ICEEMD-based approach. Although the CEEMD can show very good channel
delineation result, the proposed ICEEMD method can obtain very successful
performance. The differences between the two approaches are highlighted by the
arrows. It can be clearly shown that, the 30 Hz slice shows the main channel
structures while the 60 Hz slice shows subtle features that are not well
delineated by the 30 Hz slice. When interpreting this horizon, it is better to
utilize multiple frequency slices to have a more comprehensive understanding
about the subsurface geological structures. In the 30 Hz slices of two methods,
we can also see some acquisition footprints (the white straight lines in Figs. 4b
and 4c). The study also indicates that the acquisition footprints may interfere
with the accurate interpretation, and should be attenuated before time-frequency
decomposition based seismic interpretation.

CONCLUSION

Although the complete ensemble empirical mode decomposition (CEEMD)
algorithm can solve the mode-mixing problem of empirical mode decomposition
(EMD), there is some residual noise contained in the decomposed modes and
there are some spurious modes in the early stages of CEEMD. We introduced
the recently developed improved complete ensemble empirical mode
decomposition (ICEEMD) algorithm to further improve the EMD-based
time-frequency analysis performance of seismic data. Because of the less
residual noise left in the decomposed components and less number of spurious
modes, the ICEEMD obtains a much better decomposition performance. The
resulting time-frequency spectrum has higher resolution and less frequency
overlapping. A 1D real seismic trace, a 2D post-stack seismic section, and a 3D
seismic cube are all used to demonstrate the superior performance of
ICEEMD-based time-frequency analysis to other EMD-based approaches in
better delineating time-frequency relation, structural and stratigraphic features,
and detecting paleochannels. Since the implementation of ICEEMD is a slight
modification of CEEMD, its applications can be used as a direct alternatives to
those CEEMD-based applications.
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