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ABSTRACT

Wang, R. and Wang, Y,, 2017. Seismic reflectivity inversion by curvelet deconvolution: a
comparative study and further improvements. Journal of Seismic Exploration, 26: 331-349.

Curvelet deconvolution refers to seismic deconvolution for reflectivity inversion based on
curvelet transform. The curvelet transform is a multi-scale and multi-directional transform that can
provide a sparse representation of seismic reflectivity. When using this method to model the
reflectivity, the signal is represented effectively by large coefficients and random noise is represented
by small ones. In this paper, we conduct a comparative study in the context of reflectivity inversion,
to investigate the performance of curvelet deconvolution, least-squares method and L,-norm
deconvolution. It is shown that by using curvelet deconvolution, the inverted reflectivity protlles
have a better signal-to-noise ratio (SNR) and a higher resolution than those obtained by the
least-squares method. On the other hand, its results excel those obtained by L,-norm deconvolution
in terms of the lateral continuity. Since curvelet deconvolution can offer a trade off between the
sparseness and lateral continuity, we propose an enhanced L,-norm deconvolution by using the result
obtained by curvelet deconvolution as the initial model. Numerlcal results show that the lateral
continuity of the inversed reflectivity profile can be further improved by the proposed method.

KEY WORDS: seismic reflectivity inversion, curvelet transform, L,-norm deconvolution.

INTRODUCTION

Seismic reflectivity inversion normally applies a sparse constraint to an
inversion problem directly. However, in some occasions, the inverted seismic
reflectivity is so sparse that the underground structure is destroyed. To tackle
this problem, different models have been proposed to represent the reflectivity.
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For example, in the basis pursuit method (Zhang, 2010; Zhang and Castagna,
2011; Zhang et al., 2013), a collection of even and odd dipoles are used to
model the reflectivity. Therefore, the sparse constraint is exerted on the
corresponding coefficients, reducing the loss of geological structures. However,
these methods are normally implemented in a trace-by-trace manner and thus
there is a lack of lateral coherency for the retrieved results.

Curvelet transform was introduced as a multi-scale and multi-directional
transform (Candes and Donoho, 1999, 2002; Candes et al., 2005). It has been
proved that the curvelet transform can provide a sparse representation for the
smooth objects with edges such as seismic events. After transforming the data
into curvelet domain, the coefficients, which represent the noise and the
effective signal, can be separated clearly. Because of this property, the curvelet
transform has been used widely in seismic signal processing. Naghizadeh and
Sacchi (2010) used this method for the interpolation of aliased regularly seismic
data and got similar results as FX and FK interpolation methods.
Non-parametric seismic data recovery has been implemented with the curvelet
transform (Herrmann and Hennenfent, 2008) and can recover data with up to
80% missing traces. Also, it plays an important role in random, coherent and
incoherent noise attenuation (Neelamani et al., 2008; Kumar, 2009), showing
a better performance when compared with other methods such as median filter
and FX deconvolution.

Furthermore, since the structure of seismic reflectivity along the layers
can be seen as curves, the curvelet transform has been applied to model the
reflectivity. Non-spiky seismic reflectivity inversion was developed using the
curvelet transform (Hennenfent and Herrmann, 2005; Kumar and Herrmann,
2008). It is shown that seismic deconvolution with multichannel curvelet
operator can exploit the continuity along the reflectors by promoting the
curvelet-domain sparsity. However, since the multichannel curvelet operator
cannot provide results that are sparse and spiky, the bandwidth of the inverted
seismic reflectivity is not well compensated. Therefore, results with a good
resolution cannot be obtained using this method. Furthermore, as this method
was originally proposed only for L;-norm deconvolution, a more general case
(L,-norm) also needs to be proposed.

In this paper, we first implement the curvelet deconvolution by applying
the sparse constraint in the curvelet domain. A comparative study is then
conducted to investigate the performance of three deconvolution methods,
including curvelet deconvolution, the least-squares method and L,-norm
deconvolution. Both synthetic and field data sets have been used for this
comparison. Based on the study, we further propose an enhanced L,-norm
deconvolution method by using the result obtained by curvelet deconvolution as
the initial model during the inversion process. By showing the residual between

the original and inversed data, it is found that the lateral continuity of the spiky
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reflectivity inversed by the proposed method can be further improved. The
proposed method can be used as an alternative to obtain reflectivity results with
a good SNR, resolution and lateral continuity.

CURVELET TRANSFORM

The curvelet transform is a multi-scale and multi-directional transform
which can decompose the image (data) into harmonic scales. Curvelets can be
obtained by rotations and translations of a "mother" curvelet ¢;. There are three
parameters which play important roles in the definition of curvelet transform

(Candes et al., 2005): ’

1. Scale parameter j, different scales are corresponding to different
frequency bands.

2. Equispaced sequence of rotation angles:
6, = 2w - 2702 |
with / = 0,1,... and 0 < 0, < 2.
3. The position:
xJh = 5}(k1-2‘j,k2-2‘j’2).
As a result, curvelets are characterized by three indexes: j which
represents the scale, / which is associated with angles and k is corresponding to

different positions. The formula of curvelet transform based on the "mother"
curvelet can be expressed as

@i(X) = Saj[R'QI(X_Xl?’D)] ) (1)
where R, represents the rotation by 6 radians and Rj' is its inverse:
cosf  sinf
R9 = > Rgl = R’g = R—0 . (2)
—sinf cosf
With the above definitions, curvelet transform has several properties:

1. Tight frame.

An arbitrary function f can be expanded as a series of curvelets:
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Z (£,0,..0@;.4 and it fulfills the Parseval relation:
IRAS

Z] %zk = "f"%

5Lk

2. Parabolic scaling.

The effective length and width of curvelets obey the anisotropy scaling
relation:

width = length? .
3. Oscillatory behavior.

Curvelets are strictly localized in the frequency domain, they can be
thought as a pyramid with many directions and positions at each length
scale. Fig. 1 shows the tiling of digital curvelet transform in the frequency
domain. In the time-space domain, they are needle like with both ends
tapering off while smooth along and oscillatory across the ridge, as seen
in Fig. 2 (Wu and Hung, 2013).
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Fig. 1. The tiling of digital curvelet transform in the frequency domain (Adapted from Candes et
al., 2005).
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Fig. 2. A curvelet in both spatial and frequency domains.

The curvelet transform can provide a sparse representation of smooth
objects with piece-wise discontinuities. After transforming the data into the
curvelet domain, only a few curvelet coefficients will be large while the others
will decay rapidly. As a result, curvelet transform is a suitable tool for
providing a sparse representation of the seismic reflectivity. Wavelets have also
been used for signal decomposition, however, in the frequency domain, they are
lack of directionality. Only when the orientation is perpendicular to the
interfaces, the coefficients of wavelets decay rapidly. So the wavelet coefficients
corresponding to the seismic signal is not as sparse as that of the curvelets,
which means curvelet transform is more suitable to be used in sparse inversion
problem.

The curvelet coefficients ¢ can be obtained by calculating the inner
product of r and ¢, ,,:

Ciik = (ﬁ‘Pj,/.k) . (3)

To simplify the form of the equation above, we can re-write (3) into the
matrix-vector form:

c=Cr , 4)

where C represents the curvelet transform operator.
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Since curvelets can provide tight frames, the adjoint operator C' is equal
to the pseudo-inverse of curvelet operator C (Candes and Donoho, 2002). Thus
we can have the following reconstruction equation:

r =Clc . )

The curvelet transform maps the signal into distinct sets of curvelet
coefficients. The coefficients of the effective signal are very large. On the other
hand, the energy of random noise is spread out over all frequencies and dips.
Therefore the curvelet transform maps random noise into large number of weak
amplitude curvelet coefficients. As a result, signal and noise have minimal
overlap in the transform domain, and sparse deconvolution method can be used
to suppress the noise. In this paper, our algorithm is developed upon the fast
discrete curvelet transform via wrapping (Candes et al., 2005).

CURVELET DECONVOLUTION

Seismic reflectivity inversion is based on the convolution model.
Conventionally, in order to obtain a sparse reflectivity result, the L,-norm can

be applied to regularize the problem with the objective function (Levy and
Fullagar, 1981):

F=la— w3+, . ©)

where d is the vector of seismic trace, W is a matrix which represents the
discrete convolution operation of seismic wavelet and r is a vector of
reflectivity. N is a trade-off parameter which reflects the compromise between
the accuracy and sparsity of the reflectivity, and the value of N\ should be
selected accordingly based on different input data sets. Eq. (6) can be solved by
using L;-norm based algorithms; here the L,-norm solver used in this paper is
basis pursuit (Chen et al., 2001). When using basis pursuit, eq. (6) can be
transformed into a linear programming problem and solved by primal-dual
log-barrier LP algorithm (Kim et al., 2007).

As the structure of reflectors along the layers can be treated as curves,
curvelet coefficients can be used to represent seismic reflectivity (Hennenfent
and Herrmann, 2005; Kumar and Herrmann, 2008). The effective signal will
concentrate on large curvelet coefficients and random noise will be mapped on
weak amplitude coefficients. The reflectivity can then be written as: r = C'c,
where ¢ is the curvelet coefficient vector corresponding to seismic reflectivity
and C represents the curvelet transform operator. Since the curvelet coefficients
are sparse, the objective function becomes

J=|d—-WC%|2+ Nc], . )
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To solve this objective function, first of all, basis pursuit method is used
to obtain the result of ¢. And then, the reflectivity is calculated by r = C'c.

It should be noted that the curvelet operator is defined on a data set of
size Ntr * Nt, where Ntr is the number of traces and Nt is the number of
sample points of the corresponding trace. Therefore, curvelet operator is a
multichannel operator which is based on the entire traces of the seismic data
rather than a single trace. During the deconvolution process, all traces are
processed simultaneously and the curvelet coefficients will be approaching to
that of the real earth layers as the iteration continues. Consequently, the inherent
continuity of the obtained layers will be preserved.

NUMERICAL RESULTS FOR A COMPARATIVE STUDY

In order to evaluate the performance of the curvelet transform based
reflectivity inversion method, a comparative study is conducted and its
performance is compared with the least-squares inverse method and L, -norm
deconvolution. The synthetic data set with a flat and a dip structure is first used
for the comparison. Fig. 3 illustrates the reflectivity profiles inversed by these
three methods. By observing these results, we can come to the conclusion that
when the input data is clean, all these three methods can portray the structure
of seismic events accurately. The only difference is that the bandwidth of the
reflectivity obtained by the curvelet deconvolution is narrower than that by the
L,-norm deconvolution, but wider than that by the least-squares method.

To test these methods’ performance under low signal-to-noise (SNR)
circumstances, external random noise is added to the original clean synthetic
data, and the SNR is set to 2. By applying these three different deconvolution
methods on the noisy synthetic data, it can be observed from Fig. 4 that the
least-squares inverse method can well preserve the structure, but most of the
noise still exists on the reflectivity profile. Furthermore, L,-norm deconvolution
is able to provide a more spiky and sparse reflectivity profile. Unfortunately,
some useful structure is also eliminated and the lateral continuity is destroyed
during the inversion process. In comparison, the curvelet deconvolution can
effectively suppress the noise existed on the seismic profile, while still showing
a good lateral continuity of the seismic events. Therefore, it is concluded that

the curvelet deconvolution can offer a trade-off between the lateral continuity
and the sparseness.

A small stack (Fig. 5a) is further used to test the performance of these
three deconvolution methods. The results obtained by the least-squares method,
L,-norm deconvolution and the deconvolution based on curvelet transform are
demonstrated in Figs. 5b, 5c and 5d, respectively. From these figures it can be



338 WANG & WANG
Trace number

20 40 60
0.2
@ 0.4
2 0.6 Reseeeseetetsnennsetttencin) |
|: | <
0.8-‘ [xy 1&.
1.0 1
(a)
Trace number
20 40 60
0.2
% 0.4
@] %-»H !
E 06 ]‘%’JUJ%IQM“J J
0.8 Tfcecc il
1.0‘
(h)
Trace number
20 40 60
0.2
@ 0.4
qE, 0.6+ ....'.D-
i‘: ) .-----"‘Pp.
0.8 ."'-P..
1.0
(e)
Trace number
20 40 60
0.2
0.4
= )
E 06- .“““'h-.wu
0.8‘ -.,..’-’lp
1.0
(d)

Fig. 3. (a) Synthetic seismogram. Reflectivity obtained by (b) the least-squares inverse method. (c)
L,-norm deconvolution. (d) Curvelet deconvolution.
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seen that the stratification of Fig. 5d is better than that of the least-squares
method in Fig. 5b, as denoted by the black circle. On the other hand, although
the result of the deconvolution based on curvelet transform is not as spiky and
sparse as the result of L,-norm deconvolution shown in Fig. 5c, the lateral
continuity for the obtained result is superior, as the structure of the seismic
events is well preserved.
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Fig. 5. (a) Small stack. Reflectivity obtained by (b) the least-squares inverse method. (c) L,-norm
deconvolution. (d) Curvelet deconvolution.
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Fig. 6 illustrates a field data set and the results obtained by different
inversion methods. Fig. 7 further gives a zoomed-in view of the seismic data
with the trace number from 400 to 500 and the time from 0.4 to 0.6 second, and
also the corresponding inversed reflectivity profiles. It comes to the similar
conclusion that the reflectivity inversion based on curvelet transform can
suppress the noise in an effective manner, and has a higher resolution than that
of the least-squares inverse method. Once again, a better lateral coherency of
the structure is preserved when comparing with the reflection profile obtained
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CURVELET TRANSFORM ENHANCED L,-NORM DECONVOLUTION

L,-norm deconvolution is a kind of generalization of L,-norm
deconvolution which can obtain better results as the values of parameters can be
adjusted according to different input seismic traces (Debeye and van Riel, 1990;
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Fig. 7. (a) Zoomed-in view of the field data set. Zoomed-in view of the reflectivity obtained by (b)
the least-squares inverse method. (c) L,-norm deconvolution. (d) Curvelet deconvolution. the
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initial model in L,-norm deconvolution. As observed in the previous section, the
curvelet deconvolution has its own advantages when comparing with L,-norm
deconvolution and the least-squares inverse method, we can use the result
obtained by the curvelet deconvolution as the initial model to enhance the
performance of traditional L,-norm deconvolution method.
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Fig. 8. Reflectivity obtained by (a) L,-norm deconvolution. (b) Curvelet transform enhanced L,-norm
deconvolution.

As shown in Fig. 8, after using the result from the curvelet deconvolution
instead of conventionally used least-squares method as the initial model, the
retrieved seismic reflectivity series profile of the noisy synthetic data is cleaner
and some missing structures are preserved when comparing with the result by
the conventional L -norm deconvolution. Furthermore, we compare the
conventional and curvelet transform enhanced L -norm deconvolution

quantitatively, by calculating the residual energy ratio between the retrieved and
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original data. The equation for calculating the residual energy ratio can be
expressed as

. . 'input data energy — synthetic data en ergy]
residual energy ratio = .

input data energy ®

The residual profiles associated with different processes are shown in
Fig.9. When using the conventional L,-norm deconvolution, the residual energy
ratio is calculated to be 38.5062%, while the residual energy ratio of the
enhance method is only 20.178%. Therefore, the enhanced L,-norm
deconvolution can provide a lower residual energy ratio. From Fig. 9, it can
also be seen that when using the curvelet transform enhanced L -norm
deconvolution method, the noise existed on the reflectivity profile has been

largely eliminated, when comparing with the conventional L -norm
deconvolution.
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Fig. 9. Residuals associated with the reflectivity profile obtained by (a) L,-norm deconvolution.
(b) Curvelet transform enhanced L,-norm deconvolution.
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The same small stack data in Fig. 5a is used to test the performance of
the curvelet transform enhanced L,-norm deconvolution. As shown in Fig. 10,
it is observed that the lateral continuity of the inversed reflectivity is improved
using the proposed method, especially within the area denoted by the black
circle. By comparing the associated residual profiles, it can be seen that the
proposed method can greatly recover the structure, giving a residual profile with
small amplitude, as shown in Fig. 11.
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Fig. 10. Reflectivity obtained by (a) L,-norm deconvolution. (b) Curvelet transform enhanced
L -norm deconvolution.

Moreover, the same field data set as shown in Fig. 7a is used to evaluate
the performance. The inversed reflectivity profiles obtained by the conventional
and enhanced L,-norm deconvolution are illustrated in Fig. 12. Using the
proposed method, the structure of the reflectivity profile is more regularized and
continuous, which means that our proposed method is superior in terms of the
lateral coherency. From the residual profiles shown in Fig. 13, it is seen that
the amplitude of residuals associated with the enhanced method is lower than
that of the conventional L,-norm method. Furthermore, the continuous structures
shown on the residual profile of the proposed methods are less, which means the
lateral continuity of the seismic events is better preserved.
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Fig. 11. Residuals associated with the reflectivity profile obtained by (a) L,-norm deconvolution.
(b) Curvelet transform enhanced L,-norm deconvolution.

CONCLUSIONS

Curvelet transform is able to provide a sparse representation of seismic
reflectivity. In this paper, the multichannel curvelet operator was applied during
the inversion process to obtain a spiky result with a better lateral continuity. A
comparative study was conducted to evaluate the performance of curvelet
deconvolution, the least-squares inverse method and L,-norm deconvolution. It
is found that the deconvolution based on curvelet transform can obtain spiky
reflectivity profiles which are cleaner and with higher resolution, when
compared with those obtained by the least-squares method. On the other hand,
it can produce results which are more continuous than those obtained by
L,-norm deconvolution. In order to improve the lateral continuity of spiky
seismic reflectivity profiles, an enhanced L,-norm deconvolution method was
proposed by applying the result obtained by curvelet deconvolution, to replace
originally used least-squares solution, as the initial model. Numerical results
using a noisy synthetic data, a small stack and a large field data all validated the



CURVELET DECONVOLUTION 347

Trace number
4(}0 4&}0

T TS
dddddd [decld
15 11

il

.

.
—

—v—
Y e P
— .

idd

=

Trace number

Fig. 12. Zoomed-in view of the reflectivity obtained by (a) L,-norm deconvolution. (b) Curvelet
transform enhanced L -norm deconvolution.

proposed method, showing that the structure of the obtained reflection
coefficients profile is more regularized and has a better lateral coherency than
that of the L,-norm deconvolution, and has a higher resolution than that of the
least-squares method.
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