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ABSTRACT

Zhang, H., Zhang, J., Li, Z., Zhang, J. and Xiao, J., 2017. Improving the imaging resolution of
3D PSTM in VTI media using optimal summation within the Fresnel zone. Journal of Seismic
Exploration, 26: 311-330.

We improve the amplitude-preserved PSTM in 3D VTI media by introducing a
stationary-phase implementation in dip-angle domain so as to achieve optimal summation within
Fresnel zone. The previous proposed amplitude-preserved PSTM scheme in 3D VTI media has been
proven effective to produce fine image and gathers for hydrocarbon and fluid detection. However,
due to the application of a relatively simple migration aperture, this migration scheme may suffer
from migration noise and degrade the resolution gained. The proposed implementation in this paper
can improve the 3D VTI PSTM by smearing each time sample only along the Fresnel zone rather
than along the whole migration aperture, thus suppressing the noises on 3D VTI PSTM result. The
Fresnel zone range is defined by picking up dip angles on dip-angle gathers generated from VTI
PSTM scheme thus noises outside the Fresnel zones are suppressed in the migration process. The
proposed stationary-phase VTI PSTM could effectively solve the problem of low signal-to-noise
ratios in migrated images, especially in the presence of steeply dipping structures. We apply the
so-called stationary-phase amplitude-preserved VTI PSTM to a field data. An improved imaging
result is obtained.
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INTRODUCTION

An amplitude-preserved PSTM scheme in 3D vertical transverse isotropic
(VTI) media was developed following the conventional PSTM previously (Zhang
and Zhang, 2012). This Kirchhoff-like migration scheme has many good
features for large scale production purpose in seismic industry, such as
simplicity, relatively low computational cost, tolerance of using irregular
observation geometries as well as allowing appreciation and updating both
migration velocity and anisotropic parameter. A practical problem of this kind
of migration scheme is the presence of migration noise and artifact, which can
be the outcome of a redundant global migration aperture and aliasing of the
migration operator. Regarding the influence of imaging quality from migration
aperture, Sun (1998, 1999) analyzes the effect of restricting the domain of
migration aperture to imaging results in two-dimensional data and points out that
the data outside the Fresnel zone has not a substantial contribution to imaging,
and may even deteriorates the imaging quality by introducing migration artifacts.
Besides, due to the realization of the migration algorithm, in a migration
operation, we tend to select a global migration aperture. However, the
dip-angles of structures are spatially varying, particular in the presence of
steeply dipping structures. When the selected aperture is appropriate to a certain
imaging point, it may be larger or smaller to other imaging points.

There are many approaches intended to reduce the imaging noise by
limitation of the migration aperture. Schleicher et al. (1997) define a minimum
migration aperture based on the so-called projected Fresnel zone. Tillmanns and
Gebrande (1999) use time domain event slope information to build a heuristic
weight function which limited the migration aperture. Sun and Schuster (2001)
use the same information to transform the diffraction stack integral under the
stationary phase approximation. This formulation allows smearing energy along
a small zone centered at the specular reflection point. Buske et al. (2009)
propose an optimal anti-aliasing filter using pre-stack slope information as well.
The common challenge for these previous works is the estimation of Fresnel

zone by the slope picking procedure in pre-stack data domain to constrain the
migration operator.

Accurate estimation of the Fresnel zone can be influenced by migration
velocity, data frequencies and reflector dips. Even the reflector dips are
extracted from migration implementation (Chen, 2004) or stacked migration
section (Marfurt, 2006), obtaining accurate Fresnel zones is yet difficult. Klokov
and Fomel (2012a) estimated the Fresnel zones by jointly using the migrated
dip-angle gathers and migrated stacked section. Yu et al. (2013) directly remove
non-flat energy in the migrated dip-angle gathers to achieve stacking within the
Fresnel zones. The estimation of the Fresnel zones becomes more challenging
in 3D cases (Okoye and Uren, 1992).
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In this work, to achieve an optimal migration result with less migration
noise, we implement the amplitude-preserved 3D VTI PSTM scheme using
optimal summation aperture based on stationary-phase theory. This
implementation smears each time sample only along the Fresnel zone rather than
along the whole migration aperture. The algorithm in this paper operates in
dip-angle domain after migration and makes use of auto-picking technique of
dip-angle parameters which defines the range of the Fresnel zones for
summation.

This paper is arranged as follows: First, we introduce the method of
yielding the dip-angle gathers in time domain from 3D VTI PSTM scheme. We
then present the estimation of the 2D Fresnel zones using auto-picking
technique. Finally, we apply the resulting stationary-phase 3D amplitude-
preserved VTI PSTM to a real dataset. As the 3D amplitude-preserved VTI
PSTM is proposed previously, we will review its theory and basic theoretical
aspects as an Appendix.

DIP-ANGLE GATHERS GENERATION USING 3D VTI PSTM

Starting from the analytical derivation of 3D VTI PSTM (see Appendix
A), the stationary point (p2,pJ) obtained at imaging location (x,y,T) that reads

pg = (x - xg)/\,rms[\]%mst + (x - xg)2 + (y - y‘g)z]v2 P (la)
Py =V = ¥ Vi Vin T2 + (x — x> + (y — yp)'1" . (1b)
Fig. 1 gives the illustration of dip-angle gather generation from the
seismic data. Using eq. (1) and ignoring the difference between the interval and

RMS velocities (Zhang et al., 2016), we derive the direction cosines of
scattered-ray at imaging point (x,y,T) approximately as

ly = vpt = (x — xp)/[(x — x> + (y — y)* + V35, T* | (2a)
m, = vp§ = (y — y)/[(x — %" + (y — y)* + V3, T* , (2b)
n=[1-2-mj*, (20)

and direction cosines of incident-ray at imaging point (x,y,T) as
lS = Vp)s( = (X . XS)/[(X - XS)2 + (y - y$)2 + \/%mst]vZ s (33)
m, = vpy = (y = ¥/ = x)* + (v =y + Vi, T* (3b)

n = [1-01-mj*, (3o
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where T is the vertical one-way traveltime, V, is the root-mean-square (RMS)
velocity at the imaging point, respectively. (X,,y,) and (X,,y,) are the lateral
coordinates of the receiver and shot, and subscripts or superscripts g and s
denote scattered and incident rays, respectively.

From the perspective of imaging, the scattered-ray represents a reflection
for the incident-ray to hit the reflector at the imaging point. The normal vector
to the reflector at the imaging point can be expressed as (/;,my,n,) due to that
the scattered-ray represents a reflection for the incident-ray to hit the reflector

Fig. 1. Illustration of the generation of the dip-angle gather. Point I denotes the imaging point.
Points s and g denote shot and receiver, respectively. The right side is the enlarged detail in the
neighborhood of imaging point I. The local reflector at imaging point I can be assumed as a tilted
plane. Vectors p and q denote the scattered and incident-rays at imaging point I, respectively. Vector
n is the normal to the local reflector. Vectors d, and d, denote the intersections of the local reflector
with the xz- and yz-planes of the coordinate system, respectively. Angles 6, and 6, are the apparent
dips of the local reflector in the xz- and yz-planes. The interval velocity at imaging point I is defined
as v. Braces indicate the variables, such as ¢,, ¢,, and V., expressed in the vertical traveltime
coordinate system.

rms>
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at the imaging point. 6, and 6, denote the dip-angles of the reflector in inline
and crossline direction, respectively. Then we have the vector (cos,,0,sind,)
and (0,cosf,,sinf,) to be orthogonal with the normal to the reflector,
respectively. That yields

tanf, = —Iy/n, , (4a)

Il

tanf, = —my/ny . (4b)

The migrated dip-angle gathers are generated and the Fresnel zones
explicitly exhibit in the resulting gathers. Because the approximated dip-angles
do not change the characters of the dip-angle gathers, we replace the true
dip-angles 6, and 6, with approximated ones. The approximated dip-angles are
termed as the traveltime related dip-angles here. In practice, the traveltime
related dip-angles represent the reflector dips extracted from the imaging volume
in time, as explained in eq. (B-4) (see Appendix B). From eq. (4), we obtain the
traveltime related dip-angles of the reflector, ¢, and ¢, in both inline and
crossline direction as

tang, = [(X, = X)7, + (X, = O)7J/(7, + 7YV T (5)
tang, = [(y; = )7y + (v, = 7M1 + 1)V T (5b)

where 7, and 7, are the traveltimes from the shot (x,,y,) and receiver (Xg,Yg) tO
the imaging point (x,y,T), respectively. Integrating the solutions of eq. (5) into
the VTT PSTM scheme, we can obtain a couple of dip-angle gathers at each
lateral position by summation of the corresponding migrated result that share the
same ¢, or ¢, at each imaging point (x,y,T) regardless of offsets, respectively.
f,(t) denotes the time series of the m-th trace of migration input data. Following

the discussion in Appendix A, we have a couple of dip-angle gathers over 3D
imaging volume as

G(x,y, Ty, 0, = Z (T T (T H T X Yo XesVe) s (6a)
m=1
G,(x,y,To,,) = Xl(ri/rg)f;<rs+rg;xs,ys,xg,yg , (62)

where T, = 2T is the two-way vertical traveltime, n is the number of the
seismic traces, f(t) is the first-order time derivative of f (t), and 7, and T, are
the traveltimes from the shot (x,,y,) and receiver (x,,y,) to the imaging point
(x,y,T), respectively.
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At each lateral position (x,y), G,(T,¢,) and G,(T,,¢,) represent a couple
of 1D migrated gather in terms of traveltime related inline or crossline
dip-angle, respectively. Similar to the dip-angle gather obtained using 2D depth
migration (Landa et al., 2008; Klokov and Fomel, 2012a, 2012b; Giboli et al.,
2013), the reflections resulting from planar reflectors will exhibit concave
shapes in the migrated gathers, and the Fresnel zones (related to the reflection
events) just cover the flat part around the apexes of concave shapes independent
of velocities and reflector dips. Hence, the dip-angle gathers can be regarded as
a good candidate and simple domain for Fresnel zone estimation.

Following egs. (6a) and (6b), we can further derive the 2D dip-angle
gathers over 3D volume by summing the migrated result with the same
traveltime-related dip angle (¢,,¢,) at each imaging point (x,y,T) regardless of
offset as

G,(x,y,Tp0,) = Z_:I(TE/Tﬁ)fé,(TﬁTg;xs,ys,xg,yg) : @)

ESTIMATION OF FRESNEL ZONES IN THE DIP-ANGLE DOMAIN

After generating dip-angle gathers from migration, we note that migrated
reflection events have concave shapes, and the apex of the curve corresponds
to the dip-angle, due to the stacking of the migrated dip-angle gathers along the
direction of the dip-angle. According to stacking, in the image domain, the apex
is the stationary point and the flat parts around the apex are the Fresnel zones.
In dip-angle domain, Fresnel zone is directly exhibited thus it can be determined
from the migrated dip-angle gathers, which avoids direct calculation of the
Fresnel zone. The details of Fresnel zone in dip-angle domain are demonstrated
in Appendix B. Fig. 2 gives an example that demonstrates the Fresnel zone
range in the dip-angle domain, the ellipse (black line) Fresnel zones are put on
the local time slice of the dip-angle gather around the event apex. The 2D

Fresnel zones are obtained using the proposed scheme based on the dip-angle
gathers generated.

The Fresnel zone actually corresponds to the approximately horizontal
part of the hyperbolic reflector. Defining a;; as the amplitude of the gather that
has the time sample index i and dip-angle sample index j, with b, =
min(a; _, ;,a; ;,a;, ), we can use the following indicator I to judge whether 1,))
is the stationary point, which further determines whether the event passing
through the sample point is horizontal. The indicator formula related to the
event flatness is expressed as

j+m, j+m,

I=| X b/ X |y, ®)

k=j—m, k=j—m,
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Fig. 2. An example of 2D Fresnel zones in dip-angle domain. The ellipse is in black circle on the
local time slice around the 2D event apex. The bar shows the magnitude of the normalized
amplitudes on the time slice.

where m; and m, denote the lower and upper limits of the Fresnel zone
dip-angles, respectively. I equals to 1 when the event is absolutely horizontal.
The choice of m; and m, is very important, because if they are too close, there
will be a large number of sample points that satisfy the criterion and the true
stationary point will not be outstanding.

In this paper, we estimate the Fresnel zone in the dip-angle domain using
stacked zero offset data to determine parameters m, and m,. The idea is that if
a ray is shot from the imaging point, which is the edge of the reflection
interface used to define the stationary point, then the traveltime to the receiver
point and from the receiver point to the point one-quarter cycle above the
stationary point will be identical in terms of the time difference. Using the
conditions of the two known dip-angles and the traveltime at the stationary
point, we can obtain the edge curve of the Fresnel zone on the reflection
interface. On this interface, the curve is regarded as a circle with radius

d = Vrms\/{T/(2fO)} ’ (9)

where f; is the main frequency and T is the time depth of the stationary point.
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We can obtain the edge curve by calculating the two aforementioned dip
angles. Because these two migrated dip-angle gathers are the result of the
superposition in terms of the two dip-angles, information about the edge curve
is contained within them. For the gathers selected along the inline direction, the
lower and upper limits of the dip-angle value are the minimum and maximum
of the edge curve that corresponds to dip-angle along the inline direction. For
the crossline direction, the same condition applies. The two migrated dip-angle
gathers, m, and m,, read as

m, = (1/A¢){¢, — arctan[1/[1—1/Q2Tf,)]

X [tang, — V{(U/Tf)[1-1/Q24£)1(1 +tan’p)}]} |
(10)
m, = (1/A¢){arctan[1/[1—1/(2T\f,)]

X [tang, + V{(UTH)L-1/Q4f)I(1+an’e)}] — ¢} .

where T is the time depth, Ay is the sample interval of the dip-angle, and ¢; is
the dip-angle in the inline or crossline direction.

Isolated large amplitude may lead to deviant large results when calculation
eq. (10), therefore we need to exclude samples that are obviously not the
stationary point. We calculate the average value using the formula

j+m,

F= ) |byl/tmy—m +1) . (11

k=j—m,

We only utilize eq. (10) when the average value exceeds the defined threshold.

In determination of the upper and lower limit for the Fresnel zone using
egs. (8) to (11), for each stationary point, we calculate m, = m, + 1 and m,
= m, + 1 to determine coefficients I and F, respectively. When the conditions
are not satisfied, we record the corresponding m, and m, and take the Fresnel
zone width as m, — m; + 1. If multiple stationary points exist, we only retain
the point with maximum width. If the value is close to the maximum width, we
only retain that closest to the zero dip-angle corresponding to m, and m,. For
all of the stationary points at every time depth, we select the minimum value of
m, and the corresponding dip-angle ¢, with time depth T, and the maximum
value of m, and the corresponding dip-angle ¢, with time depth T,. Then, the
dip-angles ¢; — m;-A¢ at T, and ¢, + m,"A¢ at T, jointly constitute the upper
and lower boundary of the Fresnel zone.
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Fig. 3. Work flow chart of stationary-phase VTI PSTM. The key steps are the generation of
migrated dip-angle gathers and Fresnel zone estimation.

To assess the effects of the stationary-phase VTI PSTM, we apply the
conventional VTI PSTM as described in (Zhang and Zhang, 2012) without
optimal summation to the same data set as a reference and make a comparison.
Fig. 9 compares the migrated stacked sections on inline 181. Obvious
signal-to-noise ratio improvements can be seen. In addition, we extract the time
slice at 2.3 s (Fig. 10) from the migration volume on which we can identify the
faulting system and channels more easily. Better resolution on Fig. 10b can be
seen which is produced by the new method.
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Fig. 4. Typical shot gathers of the 3D field data. Each shot record contains 12 receiver lines.
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Fig. 5. Migration V,, velocity field used for 3D VTI PSTM (Line 181). Note that the time axe is
related to the vertical two way traveltime.
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Fig. 6. Estimated anisotropic parameter field used for VTI migration (Line 181).
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Fig. 7. Dip-angle gathers generated with the proposed method with the Fresnel zone estimated. The
two white lines in (a) and (b) denote the upper and lower limits of the Fresnel zones in each
direction. The events outside the estimated Fresnel zones will be muted before summation.
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Fig. 8. Imaging result of inline 181 and crossline 341 obtained by stationary-phase 3D VTI PSTM.
Note that the main events and faults are well imaged.

CONCLUSION

We present a new VTI PSTM method implemented with stationary theory
to improve signal to noise ratio of imaging result, which only stack within the
Fresnel zones for the migrated imaging gathers in dip-angle domain. The
scheme is developed by incorporating a dip-angle domain stationary-phase
implementation into conventional VTI PSTM. We estimate the 2D Fresnel zones
used by 3D stationary-phase VTI PSTM through auto-picking technique at each
node of a coarser horizontal grid. The 2D Fresnel zones in terms of two
dip-angles are obtained. No reflector dips are needed in advance for determining
the 2D Fresnel zones. A simple and efficient automated technique of identifying
flat events has been presented to pick up the Fresnel zones, which ensures the
practicability of stationary-phase VTI PSTM.

We apply the stationary-phase VTI PSTM to a real 3D dataset. Compared
with the result from conventional VTI PSTM, the result of stationary-phase VTI
PSTM shows better signal to noise ratio.
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Fig. 9. Imaging result comparison of inline 181 and crossline 341: (a) conventional 3D VTI PSTM;
(b) 3D VTI PSTM with optimal summation. Note that the main events and faults are maintained
while the noise level has been reduced.
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Fig. 10. Comparison of time slice at 2.3 s between (a) conventional VTI PSTM result and (b) VTI
PSTM with optimal summation. From the time-slice we note that the faults are more visible to
interpret and events become easier to trace.
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APPENDIX A
THEORY OF AMPLITUDE-PRESERVED 3D VTI PSTM

In VTI media, Alkhalifah and Tsvankin (1995) suggested that the exact
P-wave V ,(P) depends only on V, . (0) = V,+/(1+26) and a new effective
coefficient n = (¢—06)/(1+26). The formula for the P-wave phase velocity
derived by Tsvankin (1996) is described as:

V2(0)/ Vi, = 1 + esin’0 — (f/2)

+ (f12)V{[142esin®0/f]* — [2(e—5)sin?26/f]} (A-1)

where V(0) is the phase velocity, 6 is the phase angle, f = 1 — V,/V},.

Based on phase-shift theory (Gazdag, 1978; Claerbout, 1985), the
extrapolation of the source or the receiver wavefield in the F-K domain is given
by:

P(p.p,,w,T = ), AT)

i=1

= fwexp[—jo ) ATWAI-VIEI+PD/1-20@+PDH , (A2)
i=1
X [ATVAL = Vi D@3+ p)/L 209 D@+ PI1}]

= \/{1 - V%mo(Pf*‘PiVU —2neffvr21mo(pi+p§)]}'[ E ATI] . (A'3)
i=1

Substituting eq. (A-3) into (A-2) and then applying the spatial inverse Fourier
transform that yield

Py, T) = (w/4r) | | fwexp

{ —Jjol V{1 = Vi@ +p)/[1 =204 V2, @241} T—px—p,y] }dpdp, , (A-4)

where p, and p, denote the ray parameters in the x- and y-directions in the
Cartesian coordinates, respectively. According to the stationary-phase theory
(Bleistein, 1984; Doherty, 1991) and we seek the stationary-phase solution of
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the integral that yields

Po = (X + y)/Vin T2, pyr = po/(po + 1) ,
£ = V{lps + 6p; + 9p + 4 — nr(6p3—12py)1/ (A-5)
[Po + 6p5 + 9py + 4 + 1.4(2p; + 10p; + 44py)]} .
Then the traveltime and amplitude can be expressed as
= [Vl = £p/( = 2080} + EVpoP)I" (A-6)

A = {1 — 2n4&p)[1 — (2Nt l)gzpl]}/

and

TVrzlmo\/{l + 4neﬁ'€2pl - 677eff(277eff + 1)E4P%} . (A’7)

Although the theory is developed for layered-media, eqs. (A-6) and (A-7)
can be used for inhomogeneous anisotropic media with lateral variations of V
and Nett-

nmo

Since we have derived the traveltime and amplitude coefficient then we
have the imaging result as

I(x,y,T) = (A/Ay S f(w)wexp[ —j(7/2)]exp[ —jw(t,+t,)]dw
= (Ar/As)F,(ts+tr) ’ (A'S)

where F'(t) is the first-order time derivative of time series of a trace, i.e., the
first-order time derivative of the inverse Fourier transform of f(w), A, and t, are
amplitude and traveltime of wavefield from source position (x,,y,,0) to imaging
position (x, y, T), A, and t, are amplitude and traveltime of wavefield from
receiver position to imaging position.
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APPENDIX B
FRESNEL ZONES IN 2D DIP-ANGLE GATHERS

Fig. 1 gives the illustration of dip-angle gather generation. Let 6, and 6,
be the inline and crossline dip-angles of the reflector (i.e., the apparent dips of
the reflector in the x-z and y-z planes), respectively. We have the direction
cosines of the vector from point P to Q on reflector II as

| = cosa//{1 + (tanf,cosa+tand sine)’} , (B-1a)

m = sina//{1 + (tanf cosa+tand sine)’} , (B-1b)

n = (tanf,cosa + tanfd,sina)/~/{1 + (tanf,cosa+tanf, sine)’} , (B-lc)
where « denotes the azimuth angle of plane QOP. Let the length of vector PQ
be d. The coordinates of point Q can be expressed as (x,+d/,y,+dm, T, +dn/v).
Here, (x,.y,,T,) is the coordinate of imaging point P with T, denoting the
one-way vertical traveltime, and v is the interval velocity at point P.

For simplicity we replace (6,,6,) with the traveltime related dip-angle in

eq. (B-1) and let p = v/V,, then we approximately obtain the coordinates of
point Q as

Xq = X, + dcosa/A/{l + (tanp,cosa + tanpsine)’} (B-2a)
Yo = ¥, + dsina/+/{1 + (tanp,cosa + tangsina)’} | (B-2b)
Ty = T, + d(tang,cosa + tang,sina)

ViuV{l + (tang,cosa + tanesina)’} . (B-2¢)
Due to the fact that curve SQ denotes the coincided scattered and incident
rays, traveltime equality from point S to Q and O gives
{'[(XQ - XS)2 + (YQ - yS)2]/V%ms} + T(22
= {[(XP - XS)2 + (yP - yS)Q]/V%ms} + (Tp - t)z ’ (B'3)

where t denotes the time difference for determining the limits of the Fresnel

zone, which is governed by the maximum or dominant frequency of the
migrated event.
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Substituting eqs. (B-2) into (B-3) yields
Xs = Xp + d{[cosa(l+tan*y,) + tany, tany, sina]
WL + (tany,cose + tany,sina)’]} + V,, T tany, , (B-4a)
ys = yp + d{[sina(l+tan*y,) + tany, tany, cosa]
NI + (tany,cosa + tany,sina)’]} + V,, T tany, , (B-4b)
where
d =V, Q2T — 1) . (B-5)
We obtain the limits of the Fresrel zone in terms of traveltime related
dip-angle ¢, and ¢, by substituting the coordinates of point S and O into eq. (5)
" tang, = [T,tany,/(T, — O] + VT, — /T, — )
X [cosa(1+tan’y,) + tany, tany, sina]
N1 + (tany,cose + tany,sine)’] (B-6a)
tang, = [Tytany,/(T, — O] + (T, — O/(T, — 1)
X [sina(1 +tan*y,) + tany, tany, cosa]
NI + (tany,coser + tany,sina)’] . (B-6b)

Eqgs. (B-6) gives the limits of the Fresnel zone at point P in terms of two
traveltime related dip-angles at different azimuth angles.





