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ABSTRACT

Zhang, P., Dai, Y., Wang, R. and Tan, Y., 2017. A quantitative evaluation method based on EMD

for determining the accuracy of time-varying seismic wavelet extraction. Journal of Seismic
Exploration, 26: 267-292.

The bandwidth and amplitude of wavelet deconvolution results are the most important
indicators of accuracy for time-varying wavelets. To evaluate the accuracies of extracted seismic
wavelets based on these indicators, we propose a quantitative evaluation method based on empirical
mode decomposition (EMD), which offers the advantages of adaptive decomposition and multi-scale
analysis and can highlight local characteristics. First, time-varying seismic wavelets are extracted
from a non-stationary seismogram and subjected to deconvolution or reflectivity inversion. Then,
to appraise these wavelets, the amplitude spectrum from the deconvolution or inversion results is
decomposed into multi-layer intrinsic mode functions (IMF) using EMD. Next, an evaluation
parameter is constructed by summing the number of local extremes in all IMFs and normalizing this
sum with respect to the number of frequency points in the amplitude spectrum. Larger values of this
parameter indicate more accurate extracted wavelets. When applied to both synthetic and
field-collected seismic data, the proposed method performs better than conventional methods for
evaluating the accuracy of time-varying wavelet extraction.

KEY WORDS: time-varying wavelet extraction, accuracy evaluation, deconvolution, EMD.

INTRODUCTION

Seismic wavelet extraction is important for seismic data deconvolution,
wave impedance inversion and forward modeling, and the precision of the
extraction results affects the reliability and accuracy of subsequent seismic data
processing and interpretation. In real seismic data, seismic wavelets are
scattered from and absorbed by the underground medium during propagation,
resulting in a lack of high-frequency components and causing phase distortion
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of the wavelets (van der Baan, 2008; Li et al., 2015). The bandwidth, energy
and phase characteristics of time-varying seismic wavelets strongly affect the
resolution of seismic data, and the accurate extraction of time-varying seismic
wavelets has therefore become a popular area of research on seismic data
processing. In recent years, researchers have proposed various improved
methods of extracting time-varying wavelets, such as adaptive segmentation
(Wang et al., 2012) and time-frequency spectral modeling (Dai et al., 2015).
Meanwhile, reasonable and effective methods for evaluating wavelet accuracy,
which are important for enabling the selection of accurate wavelets for
application and for improving the efficiency of seismic data processing, have
also been studied.

Direct and indirect evaluation are two methods that are currently used to
evaluate the accuracy of seismic wavelets. Direct methods include the following
two approaches: evaluating the accuracy of wavelets according to their own
properties (Rietsch, 1997), such as wavelength and energy, and evaluating
wavelet accuracy based on logged data (Arild and Henning, 2003). However,
both of these methods have distinct disadvantages in practical applications;
specifically, it is difficult to apply the rough evaluations offered by the first
method for real data processing, and the second method is too strongly relied
on. Indirect methods also include two approaches. First, the synthetic
seismogram obtained from an extracted wavelet can be compared with the real
data (Chen et al., 2013); however, the reflectivity sequence from the logged
data must be known a priori, and large errors arise when noise is present.
Second, because it is universally acknowledged that the bandwidth and energy
of the time-varying wavelet deconvolution results for non-stationary
seismograms indicate the accuracy of the wavelets (Sajid and Ghosh, 2013;
Oliveira and Lupinacci, 2013), extracted wavelets can be qualitatively evaluated
based on their deconvolution results; however, this method is merely intuitive,
not quantitative. Although several evaluation criteria, such as the parsimony and
Kurtosis criteria (Yuan and Wang, 2011), have been used for quantitatively
evaluating residual phase correction, this method can only be applied when the
data contain limited extreme values, and it is difficult to effectively evaluate the
bandwidth and energy in the frequency domain. Moreover, the evaluation
capability of the method severely decreases when it is used for time-varying

deconvolution to suppress the time-varying nature of the wavelets and improve
the resolution of the seismic data.

To compensate for the deficiencies of existing methods in evaluating the
bandwidth and energy in the frequency domain, an indirect and quantitative
evaluation method based on empirical mode decomposition (EMD) is proposed
to more effectively evaluate the accuracy of extracted time-varying seismic
wavelets. The theoretical basis of the proposed method is that the bandwidth and
energy of the amplitude spectrum obtained through the deconvolution or
reflectivity inversion of extracted wavelets can indirectly reflect the accuracy of
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time-varying wavelets. The highly oscillatory behavior of the amplitude
spectrum of a seismogram directly reflects the bandwidth and energy, and EMD
is a suitable means of analyzing this oscillatory behavior because it provides the
capability of adaptive decomposition. Based on the observed characteristics of
the amplitude spectrum, an evaluation parameter can be constructed to
quantitatively and intuitively express the evaluation results, and this method can
be used to effectively evaluate the accuracy of time-varying wavelets regardless
of whether they are subjected to deconvolution or reflectivity inversion.
Therefore, in contrast to conventional evaluation methods based on qualitative
analysis and evaluation criteria, the proposed method offers a superior ability
to evaluate bandwidth and energy in the frequency domain based on the
construction of a reasonable evaluation index and behaves well in the presence
of noise. A flow chart of the proposed method is shown in Fig. 1.

Use a wavelet extraction method suitable for
non-stationary seismograms to extract wavelets

!

Obtain the deconvolution or reflectivity sequence

results from the extracted wavelets

!

Evaluate the deconvolution or inversion results
using EMD

:

Evaluate the accuracy of the extracted wavelets

Fig. 1. Flow chart of the proposed evaluation method based on EMD.
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WAVELET ACCURACY EVALUATION METHOD BASED ON EMD

The proposed method is an indirect evaluation method that allows the
wavelet accuracy to be evaluated by using EMD to obtain the bandwidth and
energy from the results of time-varying deconvolution or reflectivity inversion
based on time-varying seismic wavelets. One method of extracting such wavelets
is time-frequency spectral modeling, which is the method considered in this

paper.

Time-varying wavelet extraction based on time-frequency spectral modeling

The non-stationary convolutional model of a seismic trace is often defined
as follows (Margrave et al., 2011):

=3}

x) = | wit=r.rdr = wit,n) = 1@ | (1)

— 00

where * represents convolution; x(t) is the non-stationary seismogram; r(t) is
the reflectivity; and w(t,7) is the function describing the wavelet, which allows
temporal evolution and simple delay.

In the time-frequency spectral modeling method, it is assumed that the
amplitude and high-frequency component vary with time and that the wavelet
phase is time-invariant. The improved generalized S transform is used to
transform a non-stationary seismogram from the time domain into the
time-frequency domain (Zhang et al., 2011; Radad et al., 2015). The window
function for this transform is

G(t.h = [1A/@m)q|f|"lexp(—C/2) | o)

where q and p are adjustment factors that are greater than zero. The
time-frequency spectrum of the signal x(t) is expressed as follows:

=]

X(r,h) = | x®G—7.f) x exp(—i2nfodt , f = 0, 3)

where 7 is the sample time. Considering the time-frequency transform, a high
time resolution is observed at high frequencies and a high frequency resolution
is observed at low frequencies, which conforms to the dynamic attenuation
characteristics of the seismogram.
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By fixing t, the amplitude spectrum X(t,f) can be obtained for the
corresponding instant of time, and the time-varying seismic wavelets can then
be estimated from the wavelet amplitude spectra extracted for all instants of time
via spectral modeling and from the wavelet phase spectra via the bispectrum
method based on higher-order cumulants.

Spectral modeling assumes that the wavelet amplitude spectrum is smooth
and similar to the unimodal curve of the Ricker wavelet spectrum and that the
amplitude spectrum of the reflectivity sequence is oscillating at a high frequency
(Rosa and Ulrych, 1991; Economou et al., 2010). The empirical mathematical
expression for a seismic wavelet is as follows:

N
W = |f|*exp( Y a,f") | )
n=0

where k is a constant, g, are the coefficients of the polynomial in f, and N is the
order. Using this expression, the least-squares method can be applied to obtain
the wavelet amplitude spectrum from the seismogram. The wavelet amplitude
spectrum at each point can thus be extracted via spectral modeling combined
with time-frequency analysis.

Next, the phase of the seismic wavelet must be extracted using the
Matsuora-Ulrych algorithm (Matsuoka and Ulrych, 1984). The third-order
cumulants of the seismogram can be expressed as follows:

¢ (7,7) = E[x(Ox(t + 7)x(t + 7,)] . )

After performing a Fourier transform, we obtain the third-order spectrum
of x(t), i.e., the bispectrum, with the following amplitude and phase spectra:

le(w1»w2)| = |X(w1)l !X(wz)l lX(wx + wz)l > (6)
Y(w,w) = ¢(w) + d(w) — dlw, + w) , (7
where ¢(w) is the phase spectrum of x(t) and | X(w)| is the amplitude spectrum.

Based on the convolutional model and the nature of the bispectrum, the
following equation is obtained:

Bx(wlsw2) = Br(w17w2) + Bw(wl’w2) s (8)

where B,(w,,w,) = ¢°. The wavelet bispectrum and the seismogram bispectrum
are related by a coefficient of proportionality, which allows us to obtain the
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wavelet bispectrum from the seismogram bispectrum based on the equation
Y(w,w)) = () + ¢lw) — o(w; + w) )

where ¢(w) is the phase spectrum of the seismic wavelet and the wavelet
spectrum at each sample is expressed as follows:

a(r,t) = FY{|W(r,w)|exp[je(w)]} , (10)

where &(7,t) represents the extracted time-varying wavelet and F~' represents
the inverse Fourier transform.

Time-varying deconvolution

Time-varying wavelet deconvolution is conducted for the following two
reasons.

To compensate for energy attenuation and improve the resolution of
seismic data, the deconvolution factor can be constructed as follows using a
time-varying wavelet (Zhou et al., 2014):

Ana/[IW(T,f)| + &*A f,<f<f

max] >
O(r.,f) = 1 , T <f, or f>f (11)

1+ VAL WLE)| + e*A,] — A, else
where A, = max{|W(7,0)|}; 0 < X\ < 1;0.005 < ¢ < 0.05; f, f,, f, and

fy are the control parameters; and f, < f, < f. < f,. The deconvolution result
~is as follows:

RO = | | X.Ho(.Dexpintodidf . (12)

—00 —oo

Time-varying seismic wavelets can be subjected to reflectivity inversion
to provide references for seismic interpretation (Porsani et al., 2013). The most
effective method is to combine the methods of time-frequency spectral modeling
deconvolution and nonlinear sparse deconvolution (Sun et al., 2015). The
time-varying nature of the wavelets is initially suppressed, such that the
non-stationary seismogram becomes stationary. Then, the nonlinear method is
applied to obtain the precise inversion of the reflectivity sequence.
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Sparse deconvolution can be applied to invert the reflectivity sequence by
using the basic principle of Bayesian sparse inversion (Velis, 2008; Sun et al.,
2015). The convolutional model of a seismogram can be expressed in vector
form as follows:

s=Cr+n , (13)
where s = [s;,s,,L ,sy]" represents the seismic observation data; r =
[r,,r,,L,ry]" is the reflectivity sequence; C, is the NXM-dimensional
convolutional matrix of wavelets; and n = [n;,n,,L ,n,]" is the observation
noise, which is assumed to obey a normal distribution with a mean of zero and
a variance of 2. The vector form of the objective function based on the Cauchy
sparse constraint can be expressed as follows:

J, = (126)(C,r — s)'(C,r — s) + Y| In[1+diagr)r/26?||, . (14)

The corresponding regularization equation is as follows:

(CiC, + pQr = Cjs (15)

where u is the experience parameter and Q is a diagonal matrix that can be
expressed as

Q = [1 + diag(r)r/20?] . (16)

The steps of inverting the reflectivity sequence using an iterative method
are as follows:

1. The initial reflectivity sequence is calculated.

2. The two basic parameters o, and ¢, of the Cauchy constraint conditions
are chosen.

3. The parameter p, the diagonal matrix Q and the correlation matrix C'C,
are calculated to iteratively solve the regularization equation as follows:

= (CIC, + 4Q" ) Cls o

where k is the iteration.

Evaluation method based on EMD

The proposed evaluation method includes the following steps: obtain the
Fourier transform of the deconvolution or inversion result, decompose the
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frequency result using EMD and construct the evaluation parameter, and
evaluate the accuracy of the extracted time-varying wavelets based on the
calculated parameter value.

EMD was proposed by Huang (1998) to decompose a signal into a series
of oscillatory modes. Each of these oscillatory modes is represented by an
intrinsic mode function (IMF) with the following definition: (1) among the entire
dataset, the number of extremes and the number of zero crossings must be equal
or differ by no more than one, and (2) the mean value of the envelope defined
by the local maxima and the envelope defined by the local minima at any point
is zero. Decomposition stops when only a trend component remains (Han and
van der Baan, 2013). A signal x(t) that has been decomposed via EMD can be
expressed as follows:

N
x(t) = Y, imf(t) + c(t) , (18)

i=1

where imf, is the i-th IMF component and c(t) is the residue component.

The amplitude spectrum of a seismogram or a reflectivity sequence is
highly oscillatory with a large number of local extremes, and the numbers of
oscillation components and local extremes depend on the bandwidth and energy
in the frequency domain. If it is assumed that a reflectivity sequence obeys a
mixed Gaussian distribution, then its amplitude spectrum is distributed over the
entire  frequency band. Affected by the time-varying wavelets, the
high-frequency components of the spectrum are suppressed in the process of
convolution, and compared with those of a reflectivity sequence, the bandwidth
and energy of the corresponding seismogram are reduced and the numbers of
oscillation components and local extremes are similarly decreased. The
time-varying wavelet deconvolution of a non-stationary seismogram is an
effective method of broadening the bandwidth and increasing the energy in the
frequency domain, thereby improving the resolution, and the bandwidth and
energy of the results of deconvolution or inversion are important indicators of
the accuracy of the time-varying wavelets (Sajid and Ghosh, 2013; Oliveira and
Lupinacci, 2013). Wider frequency bands and higher amplitude energies

correspond to more local extremes, more oscillation components and more
accurate wavelets.

EMD can be used to analyze and compare the bandwidth and energy of
a seismogram before and after time-varying wavelet deconvolution because the
adaptive decomposition provided by EMD is able to highlight the oscillatory
behavior in each IMF. Wider frequency bands and higher amplitude energies
correspond to more local extremes in each IMF. Therefore, the wavelet
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accuracy can be indirectly evaluated by counting the number of local extremes
in each IMF. The evaluation parameter for the wavelet accuracy can be
constructed as follows:

1.

10.

11.

The results of deconvolution or inversion are Fourier transformed to
obtain the amplitude spectrum, which is regarded as the original signal.

To find the local maximum and minimum of the original signal, upper and
lower envelopes are obtained by fitting the local extremes.

The mean of the upper and lower envelopes is calculated.
The mean obtained in step (3) is subtracted from the original signal.

The result from step (4) is analyzed to determine whether it meets the
shifting conditions for IMFs. If it does, then the analysis proceeds to the
next step; otherwise, steps (2) through (4) are repeated.

The decomposition results from step (4) are taken as the i-th IMF
component.

A judgment is made to determine whether the stopping criterion has been
met. If so, the algorithm proceeds to step (9); otherwise, it proceeds to
step (8).

The i-th IMF component of the original signal is used as the new original
signal for step (2), and the (i+1)-th IMF component is calculated.

The IMF components and the residual component are obtained.
The number of local extremes in each IMF is counted.

The evaluation parameter is calculated using eq. (19):

f.= Z (Nmax.i + Nmin,i)/L > |Nmax,i| = >\’ lein‘i| = >\7 (19)
i=12,L ,n
where L is the frequency of the amplitude spectra; N, ; and N, ; are the
numbers of local maximum and minimum, respectively, and \ is a
threshold that represents the lowest energy of the local extremes in each
IMF component. The threshold reflects the difference in energy before
and after time-varying deconvolution. Thus, the proposed method is
effective for evaluating extracted wavelets regardless of whether the
wavelets are subjected to deconvolution or reflectivity inversion. This
method therefore overcomes the disadvantages of conventional methods.
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As discussed above, the F parameter is the number of local extremes.
Greater F values correspond to more accurate extracted time-varying seismic
wavelets. The evaluation indexes for the proposed method and for the parsimony
and kurtosis criteria are summarized in Table 1.

Table 1. The evaluation indexes for three wavelet evaluation methods

Evaluation method Evaluation index
EMD method Bandwidth and energy of the amplitude spectra
resulting from deconvolution or inversion.

Kurtosis criterion Time-domain numerical characteristics of the
results of reflectivity inversion.

Parsimony criterion Time-domain numerical characteristics of the
results of reflectivity inversion.

Analysis of anti-noise performance

The signal-to-noise ratios (SNRs) in real field data are low. Although
noise is suppressed in pre-stack processing, it is difficult to identify and
completely suppress certain types of low-energy noise; thus, random noise that
is uniformly distributed throughout the frequency band at low energy is still
present in post-stack seismic data. In the presence of noise, eq. (1) can be
expressed as follows:

x(t) = w(t,7) *r(t) + v(n) , (20)
where v(n) represents random noise.

The amplitude spectrum of a seismogram is a band-limited signal;
therefore, random noise can affect the high-frequency portion of the amplitude
spectrum and the accuracy of the wavelets extracted via time-frequency spectral
modeling. The reflectivity inversion of a time-varying wavelet extracted in the
presence of noise is performed as shown in eq. (21):

I(t) = a&(7,t) * w(7,t) * r(t) + &(7,t) * v(n) . 201

When the wavelet is affected by noise, discrepancies arise between the
extracted and theoretical wavelets; thus, the wavelet cannot be completely
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suppressed after inversion and the degree of frequency-band broadening is
limited. Moreover, a noise component exists in both the time and frequency
domains of the inversion results. In the proposed EMD-based evaluation method
based, which targets the frequency-domain results of either deconvolution or
inversion, the influence of noise on the number of local extremes in the EMD

results can be reduced by setting the lowest energies of the local extremes in
each IMF.

ANALYSIS OF SIMULATION RESULTS

The original mixed-phase wavelet that was used in this experiment can be
expressed using the ARMA formula as follows:

x(t) — 4.02x(t—1) + 8.43x(t—2) — 8.15x(t—3) + 2.86x(t—4)
=r(t) — 0.8c(t—1) + 0.2r(t—2) — 0.82r(t—3) . (22)
The equivalent of this eq. in the z domain is
W(z) =[1 —0.827"' + 0.2z72 — 0.82z77]
/Ml — 4.02z7" + 8.43272 — 8.1527° + 2.8627%] . (23)

Fig. 2a shows the original mixed-phase wavelet, and Fig. 2b presents the
corresponding reflectivity sequence, which satisfies the assumptions of
independence and identical distribution (IID) and follows a Bernoulli-Gaussian
distribution. The sampling interval is 1 ms. Fig. 2c shows a non-stationary
seismogram that was synthesized using this time-varying wavelet and reflectivity
sequence using the non-stationary convolutional model expressed in eq. (1).

Time-varying wavelet extraction

After the seismogram shown in Fig. 2c¢ was transformed into the
time-frequency domain using the improved generalized S-transform method, the
seismic wavelets were extracted at every instant by applying spectral modeling
in the time-frequency domain. Fig. 3 compares the extracted wavelets with the
theoretical wavelets at 196 ms, 413 ms, 651 ms and 805 ms. As shown in Fig.
3, the extracted wavelets are consistent with the theoretical wavelets. Over time,
the amplitude energy of the extracted wavelets decreases, reflecting the dynamic
attenuation of the wavelet during propagation. These results illustrate that the
time-frequency spectral modeling method can accurately extract time-varying
seismic wavelets in the absence of noise.
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Fig. 2. Synthetic seismogram. (a) Mixed-phase wavelet; (b) Reflectivity sequence; (c) Non-stationary
seismogram.

Time-varying deconvolution and reflectivity inversion

The extracted wavelets were subjected to time-varying deconvolution
based on eq. (11) to suppress their time-varying nature and compensate for the
observed energy attenuation; they were also subjected to reflectivity inversion
by combining eq. (11) with eq. (17). The simulation results are shown in Fig.4.

By comparing Fig. 4(b) with 4(c) and Fig. 4(f) with 4(g), it can be seen
that the non-stationary nature of the seismogram is suppressed and the amplitude
energy is improved after time-varying deconvolution of the extracted wavelets.
From Fig. 4(a) and 4(d), we know that the reflectivity sequence can be
accurately inverted from the extracted wavelets. As seen from a comparative
analysis of Fig. 4(e), 4(f) and 4(h), the frequency bandwidth of the seismogram
has been effectively broadened after reflectivity inversion and is essentially
consistent with the theoretical values. These experimental results demonstrate
the validity of the time-frequency spectral model in the absence of noise.
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Fig. 3. Time-varying wavelet extraction results. (a) Extracted wavelet compared with the theoretical
wavelet at 196 ms; (b) Extracted wavelet compared with the theoretical wavelet at 413 ms:

(c) Extracted wavelet compared with the theoretical wavelet at 651 ms; (d) Extracted wavelet
compared with the theoretical wavelet at 805 ms.

Evaluation of the accuracy of the extracted wavelets

Fig. 5 shows the results of applying EMD decomposition to the
deconvolution and reflectivity inversion results presented in Fig. 4(f) and 4(g).
The proposed method allows the evaluation of the wavelet accuracy based on the
amplitude energy and bandwidth of the deconvolution or inversion results by
counting the number of local extremes in each IMF.

The results of evaluating the amplitude spectra presented in Fig. 4 (e)-(h)
using the proposed method were also compared with those obtained using the
kurtosis and parsimony criteria (Longbottom, 1988; White, 1988), which can
be expressed by eqgs. (24) and (25):
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Fig. 4. Results of deconvolution and reflectivity inversion. (a) Reflectivity sequence;

(b) Non-stationary seismogram; (c) Deconvolution result; (d) Reflectivity inversion result; (¢) The
amplitude spectrum of (a); (f) The amplitude spectrum of (b); (f) The amplitude spectrum of (c);
(g) The amplitude spectrum of (d).
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where x(n) is the deconvolution result, m > 2, and N is the length of the
seismogram. In these methods, the best performance is indicated when V is at
a maximum and P is at a minimum. As we can observe from egs. (19), (24) and
(25), greater F and V values and smaller P values correspond to more accurate
extracted wavelets. As shown in Table 2, which presents the evaluation results,
all three methods are effective in the case of reflectivity inversion. However,
when the wavelets are subjected to time-varying deconvolution to suppress their
time-varying nature and compensate for energy attenuation, although the
proposed method remains valid, the evaluation capabilities of the kurtosis and
parsimony criteria decrease. Thus, the proposed EMD-based evaluation method
is more effective in evaluating the bandwidth and energy in the frequency
domain than conventional methods are.
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Table 2. Quantitative evaluation results for all three methods in the absence of noise.

Evaluation method Evaluation Original reflectivity Non-stationary Deconvolution Inversion

index sequence seismogram result result
EMD method F 3.1060 0.6840 1.3020 2.8720
Kurtosis criterion \Y 0.0642 0.0074 0.0064 0.0508
Parsimony criterion P 2.6299 4.4511 4.9194 2.8425
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Fig. 5. EMD decomposition results. (a) EMD decomposition of Fig. 4(f); (b) EMD decomposition
of Fig. 4(g).

Test of anti-noise performance

Random noise affects the accuracy of wavelet extraction and the results
of deconvolution and inversion. According to eq. (16), noise is still present in
a seismogram after wavelet extraction and deconvolution or reflectivity
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inversion. Because the theoretical reflectivity sequence was known in this
simulation, we could verify the validity of the method based on the similarity
coefficient between the inverted and theoretical values. The reflectivity inversion
results are shown in Figs. 6-9 for SNRs of 10 dB, 5 dB, 2 dB and O dB,
respectively, and the corresponding quantitative evaluation results are shown in
Tables 3-6.

I N 1 i
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Fig. 6. Simulation results for an SNR of 10 dB. (a) Original reflectivity sequence; (b) Seismogram
for an SNR of 10 dB; (c) Result of reflectivity inversion; (d) Amplitude spectrum of (a); (e)
Amplitude spectrum of (b); (f) Amplitude spectrum of (c), where the portion inside the rectangle is
the noise component.

Table 3-1. Quantitative evaluation result by using proposed method when the SNR is 10 dB.

Evaluation  Original reflectivity ~ Non-stationary ~ Inversion ~ F3/F1  Similarity between

method sequence (F1) seismogram (F2) result (F3) inverted and
theoretical values
EMD 3.1060 0.6720 1.6460 0.530 0.518

Table 3-2. Quantitative evaluation result by using Kurtosis criterion when the SNR is 10 dB.

Evaluation  Original reflectivity =~ Non-stationary ~ Inversion ~ V3/V1  Similarity between

method sequence (V1) seismogram (V2) result (V3) inverted and
theoretical values
Kurtosis 0.0642 0.0064 0.0408 0.735 0.518

criterion
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Table 3-3. Quantitative evaluation result by using Parsimony criterion when the SNR is 10 dBI.

Evaluation  Original reflectivity ~ Non-stationary  Inversion  P1/P3  Similarity between
method sequence (P1) seismogram (P2) result (P3) inverted and
theoretical values

Parsimony 2.6299 8.8735 3.0315 0.867 0.518
criterion
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Fig. 7. Simulation results for an SNR of 5 dB. (a) Original reflectivity sequence; (b) Seismogram
for an SNR of 5 dB; (c) Result of reflectivity inversion; (d) Amplitude spectrum of (a);

(e) Amplitude spectrum of (b); (f) Amplitude spectrum of (c), where the portion inside the rectangle
is the noise component.

Table 4-1. Quantitative evaluation result by using proposed method when the SNR is 5 dB.

Evaluation  Original reflectivity =~ Non-stationary ~ Inversion ~ F3/F1  Similarity between
method sequence (F1) seismogram (F2) result (F3) inverted and
theoretical values

EMD 3.1060 0.6640 1.3040 0.420 0.402
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Table 4-2. Quantitative evaluation result by using Kurtosis criterion when the SNR is 5 dB.

Evaluation  Original reflectivity =~ Non-stationary  Inversion ~ V3/V1  Similarity between
method sequence (V1) seismogram (V2) result (V3) inverted and
theoretical values

Kurtosis 0.0642 0.0053 0.0338 0.526 0.420
criterion

Table 4-3. Quantitative evaluation result by using Parsimony criterion when the SNR is 5 dB.

Evaluation  Original reflectivity ~ Non-stationary ~ Inversion ~ P1/P3  Similarity between
method sequence (P1) seismogram (P2) result (P3) inverted and
theoretical values

Parsimony 2.6299 5.0563 3.3393 0.788 0.420
criterion
™
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Fig. 8. Simulation results for an SNR of 2 dB. (a) Original reflectivity sequence; (b) Seismogram
for an SNR of 2 dB; (c) Result of reflectivity inversion; (d) Amplitude spectrum of (a);

(e) Amplitude spectrum of (b); (f) Amplitude spectrum of (c), where the portion inside the rectangle
is the noise component.
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Table 5-1. Quantitative evaluation result by using proposed method when the SNR is 2 dB.

Evaluation  Original reflectivity ~ Non-stationary ~ Inversion ~ F3/F1  Similarity between
method sequence (F1) seismogram (F2) result (F3) inverted and
theoretical values

EMD 3.1060 0.6420 0.8280 0.258 0.265

Table 5-2. Quantitative evaluation result by using Kurtosis criterion when the SNR is 2 dB.

Evaluation  Original reflectivity = Non-stationary ~ Inversion ~ V3/V1  Similarity between
method sequence (V1) seismogram (V2) result (V3) inverted and
theoretical values

Kurtosis 0.0642 0.0042 0.0208 0.324 0.265
criterion

Table 5-3. Quantitative evaluation result by using Parsimony criterion when the SNR is 2 dB.

Evaluation ~ Original reflectivity =~ Non-stationary  Inversion ~ P1/P3  Similarity between
method sequence (P1) seismogram (P2) result (P3) inverted and
theoretical values

Parsimony 2.6299 5.3182 3.7572 0.699 0.265
criterion

600
Time (ms) Frequency (HZ)

Fig. 9. Simulation result when the SNR is 0 dB. (a) Original reflectivity sequence; (b) Seismogram
when SNR is 0 dB; (c) Result of reflectivity inversion; (d) Amplitude spectra of (a); (¢) Amplitude
spectra of (b); (f) Amplitude spectra of (c) , where the rectangular part is the noise component.
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Table 6-1. Quantitative evaluation result by using proposed method when the SNR is 0 dB.

Evaluation  Original reflectivity —Non-stationary  Inversion ~ F3/F1  Similarity between

method sequence (F1) seismogram (F2) result (F3) inverteq and
DSOS
EMD 3.1060 0.6720 0.7210 0.232 0.224

Table 6-2. Quantitative evaluation result by using Kurtosis criterion when the SNR is 0 dB.

Evaluation  Original reflectivity =~ Non-stationary ~ Inversion ~ V3/V1  Similarity between
method sequence (V1) seismogram (V2) result (V3) inverted and
theoretical values

Kurtosis 0.0642 0.0039 0.0174 0.271 0.224
criterion

Table 6-3. Quantitative evaluation result by using Parsimony criterion when the SNR is 0 dB.

Evaluation  Original reflectivity ~ Non-stationary ~ Inversion ~ P1/P3  Similarity between
method sequence (P1) seismogram (P2) result (P3) inverted and
theoretical values

Parsimony 2.6299 5.4701 4.1236 0.638 0.224
criterion

As shown in the above tests, the proposed EMD-based method can be
used to objectively evaluate the accuracy of extracted wavelets under various
SNR conditions, and it is more accurate and stable than conventional evaluation
criteria. The quantitative evaluation results in the presence of noise indicate that
the accuracy of time-varying wavelet extraction based on time-frequency spectral
modeling is affected by noise; as the noise increases, the wavelet extraction
accuracy degrades. This conclusion is consistent with the theoretical analysis.

ANALYSIS OF REAL SEISMIC DATA

Fig. 10 shows the post-stack seismic section of an oil field obtained using
a sampling interval of 1 ms. The validity of the proposed method for the
processing of actual seismic data was verified using the workflow illustrated in
Fig. 1.
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Fig. 10. Actual post-stack seismic section of an oil field.

Single trace test

The 131st trace, which is shown in Fig. 11 (a), was considered as an
example. The time-varying seismic wavelets were extracted via time-frequency
spectrum modeling at, for example, 1.2 s, 1.5 s and 1.8 s, as shown in Fig.
11(b), and the results were found to exhibit the expected dynamic attenuation
due to absorption.

Fig. 12 shows the comparison against a well log synthetic with the
reflectivity inversion result obtained from the extracted wavelets. The proposed
method and the kurtosis and parsimony criteria were used to evaluate the results
presented in Fig. 12, and the evaluation results are shown in Table 7. As seen
from Table 7, the evaluation result by using proposed method is closest to the
similarity between the inverted and logging values and we conclude that the
proposed EMD-based method is more effective and accurate than the
conventional methods, which is consistent with the conclusions obtained from
the theoretical analyses and numerical simulations.
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Fig. 11. Time-varying wavelet extraction from actual seismic data. (a) The 131st seismic trace; (b)
Wavelets extracted via time-frequency spectral modeling.
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Fig. 12. The comparison against a well log synthetic with the reflectivity inversion result
(a) Reflectivity inversion result; (b) Reflectivity from logging; (c) Amplitude spectrum of (a); (d)
Amplitude spectrum of (b)
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Table 7-1. Quantitative evaluation result for actual seismic data by using proposed method.

Evaluation  Reflectivity from  Reflectivity inversion ~ F2/F1  Similarity betweep the
method logging (F1) result (F2) inverted and logging values

EMD 3.3420 3.0060 0.899 0.876

Table 7-2. Quantitative evaluation result for actual seismic data by using Kurtosis criterion.

Evaluation  Reflectivity from  Reflectivity inversion =~ V2/V1  Similarity between the

method logging (V1) result (V2) inverted and logging values
Kurtosis 0.0086 0.0079 0.918 0.876
criterion

Table 7-3. Quantitative evaluation result for actual seismic data by using Parsimony criterion.

Evaluation  Reflectivity from  Reflectivity inversion ~ P1/P2  Similarity between the

method logging (P1) result (P2) inverted and logging values
Parsimony 5.0488 5.4902 0.920 0.876
criterion

Multi-trace seismic data test

To further verify the practicability of the proposed method, the multi-trace
seismic data was deconvolved using the extracted wavelets, as shown in Fig. 13.
Fig. 13 reveals that the seismic data after deconvolution is of higher resolution.
Fig. 14 describes the frequency-domain results of Fig. 13, and it is shown that
the bandwidth and amplitude energy are improved after deconvolution. Thus,
it is concluded that time-varying wavelet extraction can be applied to improve
the resolution of seismic data.

The quantitative evaluation results for the processing of the multi-trace
seismic data are shown in Table 8. These evaluation results also indicate that

time-frequency spectral modeling can help to broaden the bandwidth and
improve the resolution of seismic data.
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deconvolution; (b) Seismic data after deconvolution.
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Fig. 14. Amplitude spectra of Fig. 13. (a) Amplitude spectrum of Fig.13(a); (b) Amplitude spectrum

of-Fig. 13(b).

Table 8. Quantitative evaluation results for the multi-trace seismic data.

Evaluation method  Evaluation index

Original seismic data  Seismic data after deconvolution

EMD F 1.1879 1.8326
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CONCLUSION

In this paper, a quantitative evaluation method based on EMD for
determining the accuracy of time-varying seismic wavelet extraction is proposed.
Theoretical analyses, numerical simulations and the results of processing real
data verify that the proposed method can be applied to quantitatively evaluate
the accuracy of extracted time-varying wavelets. The study yields the following
conclusions:

1. The proposed method is more effective and intuitive than conventional
qualitative evaluations, overcomes the deficiencies of conventional
evaluation criteria in evaluating the bandwidth and energy in the
frequency domain, and enables a quantitative evaluation of wavelet
accuracy based on the results of time-varying deconvolution and
reflectivity inversion. The proposed method facilitates the selection and
application of an accurate time-varying wavelet extraction method in
seismic data processing. Moreover, the method can be used to obtain
accurate evaluations in the presence of noise.

2. Time-varying seismic wavelet extraction based on time-frequency spectral
modeling is precise in the absence of noise but is easily corrupted by
noise. More specifically, the validity of the method is degraded in noisy
environments. Therefore, the improvement of existing methods of
time-varying wavelet extraction or the development of novel methods with
better anti-noise capabilities is expected to be a popular area of research
in the future.
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