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ABSTRACT

Ryu, D., Kim, A., Ha, W. and Shin, C., 2017. Robustness of Laplace domain waveform inversions
to cycle skipping. Journal of Seismic Exploration, 26: 251-266.

The local minima problem introduced by cycle skipping is an important barrier for a
successful waveform inversion. However, numerical examples of the Laplace-domain full waveform
inversions show that we can start from simple initial models to obtain subsurface models, without
the local minima problem. Although we can infer that the Laplace-domain inversion is robust to the
cycle skipping problem from previous literatures, theoretical examination about the effect of cycle
skipping in the Laplace domain is missing. We explain why the Laplace-domain logarithmic
objective function is robust to cycle skipping by examining the effect of time shifts of seismic traces
on the objective function. A test using a sine wavelet shows that the Laplace transform converts the
time shift in the time domain to an amplitude change in the Laplace domain. The amplitude change
due to the time shift shows monotonous variations as the amount of time shift increases. Therefore,
no cycle skipping effect in the Laplace domain is evident, and the Laplace domain objective function
shows a monotonous variation. Numerical examples using 1D and 2D models demonstrate that the
Laplace domain objective function is robust to cycle skipping.

KEY WORDS: Laplace domain, full waveform inversion, cycle skipping.

INTRODUCTION

Correct subsurface model information is crucial for successful subsurface
imaging. There are several kinds of techniques to obtain subsurface model
parameters, such as travel time tomography (White, 1989), stereotomography
(Billette and Lambaré, 1998), migration velocity analysis (Liu and Bleistein,
1995), and full waveform inversion (Tarantola, 1984). Full waveform inversion
is one of the most advanced techniques for subsurface estimation. It updates the
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subsurface model to the direction that minimizes the differences between the
observed and modeled seismic data (Tarantola, 1984).

There are two kinds of optimization strategies for full waveform
inversions. Global optimization methods try to find the global minimum or
maximum using appropriate constraints (Landa et al., 1989; Sen and Stoffa,
1991; Stoffa and Sen, 1991). On the other hand, local-gradient-based
optimization methods use the gradient direction of the objective function at the
current position to find a neighboring minimum or maximum. Most waveform
inversion methods use a form of the local-gradient-based optimization approach
due to the computational burden. The local minimum is a critical barrier for
successful convergence in this approach. Major sources of the local minima
include the cycle skipping of the seismic signal, noises, and simplified
governing equations for wave propagation. An accurate starting model or a

robust objective function is required to avoid the local minima problem (Virieux
and Operto, 2009).

Time- or frequency-domain full waveform inversions combined with travel
time tomography (Brenders and Pratt, 2007) or stereotomography (Prieux et al.,
2012) attempt to obtain a better starting model to avoid the local minima.
Multiscale or sequential approaches avoid the local minima by starting inversion
from low-frequency data, which contains fewer local minima in their objective
functions (Bunks et al., 1995; Sirgue and Pratt, 2004; Ravaut et al., 2004).
These methods use the results of lower frequency inversions as the starting
models for higher frequency inversions to approach the global minimum.
Research has been conducted to find more robust objective functions (Guitton
and Symes, 2003; Ha et al., 2009; Brossier et al., 2010; Alkhalifah and Choi,
2012; Warner and Guasch, 2014; Wu et al., 2014).

Laplace-domain full waveform inversions, unlike the time- or
frequency-domain inversions, successfully yield inversion results with poor
starting models. The inversion can start from constant velocity models or simple
gradient models (Ha et al., 2012; Ha and Shin, 2012; Pyun et al., 2010; Shin
et al., 2013; Shin and Cha, 2008; Shin and Ha, 2008; Shin et al., 2014), which
implies that the Laplace domain objective function is not sensitive to the cycle
skipping problem. However, theoretical examination of the cycle skipping in the
Laplace domain is not presented yet.

In this study, we explain why the Laplace-domain logarithmic objective
function is robust to the cycle skipping problem. We first examine the effect of
the time shift of a simple time-domain signal on the logarithmic objective
function in the Laplace domain. We compare the time- and frequency-domain
L, objective function with the Laplace-domain objective function. Then, we use

1D and 2D examples with one variable to depict the behavior of the objective
function.
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EFFECT OF CYCLE SKIPPING ON OBJECTIVE FUNCTIONS IN TIME,
FREQUENCY AND LAPLACE DOMAINS

We examine the effect of cycle skipping on the objective functions in
time, frequency, and Laplace domains. We chose common objective functions
for each domain. The time domain L, objective function (Tarantola, 1984;
Mora, 1987) is defined as:

o

E) = % | [p® — doPdt | (1)
0

where p(t) is the modeled wavefield, and d(t) is the observed wavefield. When
there are multiple receivers and sources, we can use the summation over

receivers and sources. The frequency domain L, objective function (Pratt et al.,
1998; Pratt, 1999) is

E@) = %[pw) — dwllpw) — dw]* , @
where * indicates the complex conjugate, « is the angular frequency, and

)
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The Laplace domain logarithmic objective function (Shin and Cha, 2008)
E(s) = %{In[pGs)d©)1} | @

where s is a positive damping constant, and

)

ps) = | pmear |
0 )

ds) = | dweat .
0
Note that the frequency- and Laplace-domain objective functions are

calculated using single frequency or damping constant while the time-domain
objective function is integrated over time.
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We generated a 0.5 Hz sine signal that was padded with zeros for the
examination. The synthetic signal is defined as:

0 , 0=st<2
d(t) = 4{sin(wt) , 2 <t<8 , (6)
0 ,8=<t<10

where the first arrival time is 2 s. We set this signal as the observed wavefield
and generated the modeled wavefield by applying time-shift, 7, to the signal to
mimic cycle skipping. We used a zero-padded simple signal and time shift to
isolate the effect of cycle skipping from the effect of amplitude change. We
defined the modeled wavefield as:

p(t) = dit — 7) , )

where —2 < 7 < 2. We limited the time shift from —2 s to 2 s to avoid
changes in the shape of the sine wavelet. Fig. 1 shows the observed and the two
modeled wavelets with different time shift. Note that there is no cycle skipping
between the top and middle wavelets; however, we can see cycle skipping
between the top and bottom wavelets. Because we used a 0.5 Hz sine wavelet,
cycle skipping occurs when the absolute value of the time shift is larger than Is,

which is equivalent to half of the period of the signal (Virieux and Operto,
2009).

We can see the effect of cycle skipping on the time- and frequency-
domain objective functions in Figs. 2a and 2b. When the absolute value of the
time shift is larger than 1 s, cycle skipping occurs, and the objective functions
in the time and frequency domains are directed towards the local minima. The
time shift changes the phase of the frequency-domain wavefield, which can
suffer from phase wrapping (Alkhalifah and Choi, 2012).

On the other hand, the Laplace-domain logarithmic objective function

behaves differently when there is a time shift. We can obtain the modeled
Laplace domain wavefield by Laplace transforming the time-shifted signal as:

p(s) = | pe=sdt = | dt — me—dr . (8)
0 0

By substituting x = t — 7 in the equation above, we can derive the
following equation:
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The term | % d(x)e™ equals O when the time shift is larger than 0
because the signal is causal. When the time shift is smaller than O, the term
§ 2,d(x)e ™ still equals O because —7 is not larger than the first arrival time.

Amplitude

Amplitude

Amplitude

Time (s)

Fig. 1. A synthetic signal used for the analysis. The signals in the middle and bottom panels are
time-shifted version of the original signal in the top panel.
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Note that the time-shifted signal differs from the original signal by the term e .
The time shift changes the amplitude of the Laplace-domain wavefield. As the
time shift increases, the amplitude decreases monotonously. The amplitude also
increases monotonously as the time shift decreases. Therefore, the
Laplace-domain objective function always increases whether the time shift
increases or decreases.

We can substitute eq. (9) in eq. (4) to calculate the objective function as
E(s) = Y% {In[p(s)/d(s)]}? = Y% {In[d(s)e ¥/d(s)]}* = Y {In(e™)}

= Wh(—s7)? = (s7)%/2 . (10)
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Fig. 2. Objective functions calculated using the time-shifted signals. (a) the time-domain L, objective
function, (b) the frequency-domain L, objective function when the frequency is 0.5 Hz, and the
Laplace-domain logarithmic objective functions when the damping constant is (¢) 5 s™', and

(d) 10 s™', respectively.
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The result is a quadratic function of 7. There is no local minimum in the
function above, regardless of cycle skipping. Figs. 2c and 2d show that the
Laplace-domain objective functions calculated using eq. (4) and eq. (10) match
exactly.

NUMERICAL EXAMPLES

We simulated seismic wavefields using 1D and 2D models. The 1D model
contains 3 layers (Fig. 3a). The velocities of each layer are 1.5, 2.5, and 3.5
km/s. We generated the observed seismic signal using the acoustic wave
equation and a Ricker source wavelet (Fig. 3b). Fig. 4a shows the seismogram.
We extracted the trace at the surface from the seismogram and calculated the
objective functions with the modeled data obtained by varying the velocity of the
second layer. The velocity of the second layer varies from 1.0 to 4.0 km/s at
the interval of 0.1 km/s. Fig. 4b shows the observed data and the modeled data
with different velocities. The wavelet at 1.5 s is the reflected wave from the
interface between the first and second layers. As the velocity of the second layer
varies, the amplitude of the first reflected wave changes. The wavelet at 2.3 s
is the reflected wave from the interface between the second and third layers.
The velocity change introduces both amplitude change and time shift to the
second reflected wave. The main source of cycle skipping in this example is the
time shift of the second reflected wave.

Fig. 5 shows the objective functions obtained in the time, frequency, and
Laplace domains. The time-domain objective function (Fig. 5a) shows a very
narrow convex area. There are local minima close to the true velocity because
a small variation of the velocity introduces cycle skipping of the second
reflection event. Unless we start from an accurate initial model, finding the true
velocity model using a local-gradient based optimization method is difficult.
Frequency-domain objective functions at 3 and 6 Hz (Figs. 5b and 5c) also
contain local minima. The convex area is broader at lower frequencies, as
demonstrated by many researchers (Bunks et al., 1995; Shin and Ha, 2008: Shin
and Cha, 2008). On the other hand, Laplace-domain objective functions show
no local minima, regardless of the damping constant (Figs. 5d and Se).

We also tested a 2D velocity model. Fig. 6a shows the AA’ profile of the
SEG/EAGE 3D salt model (Aminzadeh et al., 1994). We generated additional
velocity models to obtain the modeled data by varying the velocity of the salt
body from 2.0 to 6.0 km/s at the interval of 0.1 km/s. The true velocity of the
salt body used to obtain the observed data is 4.45 km/s. We modeled the
acoustic wave propagation for 10 s with one source at the center of the surface.
Figs. 6b and 6¢ show the modeled and observed shot obtained from the velocity
models with the velocity of the salt of 3.5 and 4.45 km/s, respectively. We
extracted traces at 12 km from the left for comparison (Fig. 7a). We can
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observe cycle skipping between the observed and modeled traces. However, the
Laplace-domain wavefields obtained from different salt velocities show only
mild amplitude variations (Fig. 7b). The amplitude change and time shift in the
time-domain wavefields are merged into the amplitude change in the Laplace
domain. The variation of the amplitude is larger at a longer offset for a fixed
damping constant because the move-out is larger at the longer offset. Unlike the
time-domain objective function, Laplace-domain objective functions contain no
local minimum (Fig. 8). Frequency-domain objective functions show similar
behaviors to those in the previous 1D example (Shin and Ha, 2008; Shin and
Cha, 2008).
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Fig. 3. (a) A 3-layer 1D velocity model, and (b) the source wavelet used in the example and its
amplitude spectrum.
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Fig. 4. (a) The recorded seismogram, and (b) the surface seismograms from different second-layer
velocities.
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Fig. 5. Objective functions as functions of the velocity of the 2nd layer. (a) The time-domain L,
objective function, and the frequency-domain L, objective functions when the frequency is (b) 3 Hz,
and (c¢) 6 Hz. The Laplace-domain logarithmic objective functions when the damping constant is

(d) 5s7', and (e) 10 s™', respectively.
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Fig. 6. (a) The AA’ profile of the SEG/EAGE 3D salt model (Aminzadeh et al., 1994). Shot gathers
shown up to 5 s obtained using the velocity of salt as (b) 3.5 km/s and (c) 4.45 km/s.

DISCUSSION

We could observe no local minimum in the previous examples with one
variable; however, Laplace-domain objective functions also have local minima
with lots of model parameters and noise. However, they have a larger convex
area than those of time- or frequency-domain L, objective functions. There are
many examples in the literature demonstrating the ability of the Laplace-domain
inversion to start from a scratch model and converge (Ha et al., 2012; Ha and
Shin, 2012; Pyun et al., 2010; Shin et al., 2013, 2014).
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Fig. 7. (a) Traces at 12 km from the left in Fig. 6b and c. (b) Laplace transform of the shot gathers
in Fig. 6b and ¢ when the damping constant is 5 s~'.

One important source of the local minimum in the Laplace domain is the
maximum recording time. Because Laplace-transform of the observed data
involves the Laplace transform [eq. (5)], we need long recording times for a
stable transform, particularly when the damping constant is low (Ha et al.,
2012). Fig. 9 shows the Laplace-domain objective function of the 2D salt
example with the damping constant of 5 s~!, when the maximum recording time
is 4 s. We can observe local minima in the objective function. The stability
problem is more severe when the damping constant is low. We can use a high
damping constant without a stability problem; however, we need to invert a low
damping constant to obtain information from the depth (Ha et al., 2012).
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Therefore, seismic data with a long recording time is required for a stable
convergence of the Laplace-domain full waveform inversion. When data with
a long recording time is not available, simultaneous inversions of both low and
high damping constants (Shin and Cha, 2008) or sequential inversion approaches
starting from high damping can mitigate the local minima problem in the
Laplace domain (Shin et al., 2010).
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Fig. 9. The Laplace domain objective function with the maximum recording time of 4 s and the

damping constant of 5 s™',

CONCLUSIONS

We demonstrated why the logarithmic objective function of the Laplace
domain inversion is robust to cycle skipping. Cycle skipping occurs because of
the time shift of a seismic wavelet from inaccurate subsurface parameters. Time-
or frequency-domain objective functions show cyclic behavior as the time shift
increases and develop local minima. On the other hand, the Laplace-domain
logarithmic objective function does not have the local minima problem
introduced by cycle skipping. The increased time shift changes the amplitude of
the Laplace-domain wavefields monotonously, which explains why Laplace-
domain inversions are robust to poor initial models. Dependency on the
recording time is a limitation of the Laplace-domain inversion methods, and we
need further studies to stabilize the Laplace-domain inversion of data with a
short recording time and low damping constants.
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